AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384805
by jasperE3

- Day 1

Problem 1 A natural number is called triangular if it may be presented in the form $\frac{n(n+1)}{2}$. Find all values of $a(1 \leq a \leq 9)$ for which there exist a triangular number all digit of which are equal to a.

Problem 2 Prove that the equation

$$
\sqrt{2-x^{2}}+\sqrt[3]{3-x^{3}}=0
$$

has no real solutions.
Problem 3 There are given 20 points in the plane, no three of which lie on a single line. Prove that there exist at least 969 quadrilaterals with vertices from the given points.

- Day 2

Problem 4 It is given a triangle $A B C$. Let R be the radius of the circumcircle of the triangle and O_{1}, O_{2}, O_{3} be the centers of excircles of the triangle $A B C$ and q is the perimeter of the triangle $O_{1} O_{2} O_{3}$. Prove that $q \leq 6 R \sqrt{3}$. When does equality hold?

Problem 5 Let $A_{1}, A_{2}, \ldots, A_{2 n}$ are the vertices of a regular $2 n$-gon and P is a point from the incircle of the polygon. If $\alpha_{i}=\angle A_{i} P A_{i+n}, i=1,2, \ldots, n$. Prove the equality

$$
\sum_{i=1}^{n} \tan ^{2} \alpha_{i}=2 n \frac{\cos ^{2} \frac{\pi}{2 n}}{\sin ^{4} \frac{\pi}{2 n}}
$$

Problem 6 In a triangular pyramid $S A B C$ one of the plane angles with vertex S is a right angle and the orthogonal projection of S on the base plane $A B C$ coincides with the orthocenter of the triangle $A B C$. Let $S A=m, S B=n, S C=p, r$ is the inradius of $A B C$. H is the height of the pyramid and r_{1}, r_{2}, r_{3} are radii of the incircles of the intersections of the pyramid with the plane passing through $S A, S B, S C$ and the height of the pyramid. Prove that
(a) $m^{2}+n^{2}+p^{2} \geq 18 r^{2}$;
(b) $\frac{r_{1}}{H}, \frac{r_{2}}{H}, \frac{r_{3}}{H}$ are in the range $(0.4,0.5)$.

