Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384806
by jasperE3

- Day 1

Problem 1 Find all natural numbers $a>1$, with the property that every prime divisor of $a^{6}-1$ divides also at least one of the numbers $a^{3}-1, a^{2}-1$.
K. Dochev

Problem 2 Two bicyclists traveled the distance from A to B, which is 100 km , with speed $30 \mathrm{~km} / \mathrm{h}$ and it is known that the first started 30 minutes before the second. 20 minutes after the start of the first bicyclist from A, there is a control car started whose speed is $90 \mathrm{~km} / \mathrm{h}$ and it is known that the car is reached the first bicyclist and is driving together with him for 10 minutes, went back to the second and was driving for 10 minutes with him and after that the car is started again to the first bicyclist with speed $90 \mathrm{~km} / \mathrm{h}$ and etc. to the end of the distance. How many times will the car drive together with the first bicyclist?

K. Dochev

Problem 3 On a chessboard (with 64 squares) there are situated 32 white and 32 black pools. We say that two pools form a mixed pair when they are with different colors and they lie on the same row or column. Find the maximum and the minimum of the mixed pairs for all possible situations of the pools.

K. Dochev

- Day 2

Problem 4 Let $\delta_{0}=\triangle A_{0} B_{0} C_{0}$ be a triangle. On each of the sides $B_{0} C_{0}, C_{0} A_{0}, A_{0} B_{0}$, there are constructed squares in the halfplane, not containing the respective vertex A_{0}, B_{0}, C_{0} and A_{1}, B_{1}, C_{1} are the centers of the constructed squares. If we use the triangle $\delta_{1}=\triangle A_{1} B_{1} C_{1}$ in the same way we may construct the triangle $\delta_{2}=\triangle A_{2} B_{2} C_{2}$; from $\delta_{2}=\triangle A_{2} B_{2} C_{2}$ we may construct $\delta_{3}=\triangle A_{3} B_{3} C_{3}$ and etc. Prove that:
(a) segments $A_{0} A_{1}, B_{0} B_{1}, C_{0} C_{1}$ are respectively equal and perpendicular to $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$;
(b) vertices A_{1}, B_{1}, C_{1} of the triangle δ_{1} lies respectively over the segments $A_{0} A_{3}, B_{0} B_{3}, C_{0} C_{3}$ (defined by the vertices of δ_{0} and δ_{1}) and divide them in ratio $2: 1$.
K. Dochev

Problem 5 Prove that for $n \geq 5$ the side of regular inscribable n-gon is bigger than the side of regular $n+1$-gon circumscribed around the same circle and if $n \leq 4$ the opposite statement is true.

Problem 6 In space, we are given the points A, B, C and a sphere with center O and radius 1 . Find the point X from the sphere for which the sum $f(X)=|X A|^{2}+|X B|^{2}+|X C|^{2}$ attains its maximal and minimal value. Prove that if the segments $O A, O B, O C$ are pairwise perpendicular and d is the distance from the center O to the centroid of the triangle $A B C$ then:
(a) the maximum of $f(X)$ is equal to $9 d^{2}+3+6 d$;
(b) the minimum of $f(X)$ is equal to $9 d^{2}+3-6 d$.
K. Dochev and I. Dimovski

