

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384808 by jasperE3

– Day 1

Problem 1 Find all natural values of *k* for which the system

$$\begin{cases} x_1 + x_2 + \dots + x_k = 9\\ \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_k} = 1 \end{cases}$$

has solutions in positive numbers. Find these solutions.

I. Dimovski

Problem 2 Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the inequality

$$xf(y) + yf(x) = (x+y)f(x)f(y)$$

for all reals x, y. Prove that exactly two of them are continuous.

I. Dimovski

Problem 3 Prove that a binomial coefficient $\binom{n}{k}$ is odd if and only if all digits 1 of k, when k is written in binary, are on the same positions when n is written in binary.

I. Dimovski

- Day 2

Problem 4 On the line *g* we are given the segment *AB* and a point *C* not on *AB*. Prove that on *g*, there exists at least one pair of points *P*, *Q* symmetrical with respect to *C*, which divide the segment *AB* internally and externally in the same ratios, i.e

$$\frac{PA}{PB} = \frac{QA}{QB} \qquad (1)$$

If A, B, P, Q are such points from the line g satisfying (1), prove that the midpoint C of the segment PQ is the external point for the segment AB.

K. Petrov

Problem 5 The point *M* is inside the tetrahedron *ABCD* and the intersection points of the lines AM, BM, CM and DM with the opposite walls are denoted with A_1, B_1, C_1, D_1 respectively. It is given also that the ratios $\frac{MA}{MA_1}$, $\frac{MB}{MB_1}$, $\frac{MC}{MC_1}$, and $\frac{MD}{MD_1}$ are equal to the same number *k*. Find all possible values of *k*.

AoPS Community

1968 Bulgaria National Olympiad

K. Petrov

Problem 6 Find the kind of a triangle if

 $\frac{a\cos\alpha + b\cos\beta + c\cos\gamma}{a\sin\alpha + b\sin\beta + c\sin\gamma} = \frac{2p}{9R}.$

 $(\alpha, \beta, \gamma \text{ are the measures of the angles, } a, b, c \text{ are the respective lengths of the sides, } p \text{ the semiperimeter, } R \text{ is the circumradius})$

K. Petrov

