AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384808
by jasperE3

- Day 1

Problem 1 Find all natural values of k for which the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\ldots+x_{k}=9 \\
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{k}}=1
\end{array}\right.
$$

has solutions in positive numbers. Find these solutions.
I. Dimovski

Problem 2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the inequality

$$
x f(y)+y f(x)=(x+y) f(x) f(y)
$$

for all reals x, y. Prove that exactly two of them are continuous.

I. Dimovski

Problem 3 Prove that a binomial coefficient $\binom{n}{k}$ is odd if and only if all digits 1 of k, when k is written in binary, are on the same positions when n is written in binary.

I. Dimovski

- Day 2

Problem 4 On the line g we are given the segment $A B$ and a point C not on $A B$. Prove that on g, there exists at least one pair of points P, Q symmetrical with respect to C, which divide the segment $A B$ internally and externally in the same ratios, i.e

$$
\begin{equation*}
\frac{P A}{P B}=\frac{Q A}{Q B} \tag{1}
\end{equation*}
$$

If A, B, P, Q are such points from the line g satisfying (1), prove that the midpoint C of the segment $P Q$ is the external point for the segment $A B$.

K. Petrov

Problem 5 The point M is inside the tetrahedron $A B C D$ and the intersection points of the lines $A M, B M, C M$ and $D M$ with the opposite walls are denoted with $A_{1}, B_{1}, C_{1}, D_{1}$ respectively. It is given also that the ratios $\frac{M A}{M A_{1}}, \frac{M B}{M B_{1}}, \frac{M C}{M C_{1}}$, and $\frac{M D}{M D_{1}}$ are equal to the same number k. Find all possible values of k.
K. Petrov

Problem 6 Find the kind of a triangle if

$$
\frac{a \cos \alpha+b \cos \beta+c \cos \gamma}{a \sin \alpha+b \sin \beta+c \sin \gamma}=\frac{2 p}{9 R}
$$

(α, β, γ are the measures of the angles, a, b, c are the respective lengths of the sides, p the semiperimeter, R is the circumradius)
K. Petrov

