AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384809
by jasperE3

Problem 1 The numbers $12,14,37,65$ are one of the solutions of the equation $x y-x z+y t=182$. What number corresponds to which letter?

Problem 2 Prove that:
(a) if $y<\frac{1}{2}$ and $n \geq 3$ is a natural number then $(y+1)^{n} \geq y^{n}+(1+2 y)^{\frac{n}{2}}$;
(b) if x, y, z and $n \geq 3$ are natural numbers for which $x^{2}-1 \leq 2 y$ then $x^{n}+y^{n} \neq z^{n}$.

Problem 3 It is given a right-angled triangle $A B C$ and its circumcircle k.
(a) prove that the radii of the circle k_{1} tangent to the cathets of the triangle and to the circle k is equal to the diameter of the incircle of the triangle $A B C$.
(b) on the circle k there may be found a point M for which the sum $M A+M B+M C$ is as large as possible.

Problem 4 Outside of the plane of the triangle $A B C$ is given point D.
(a) prove that if the segment $D A$ is perpendicular to the plane $A B C$ then orthogonal projection of the orthocenter of the triangle $A B C$ on the plane $B C D$ coincides with the orthocenter of the triangle $B C D$.
(b) for all tetrahedrons $A B C D$ with base, the triangle $A B C$ with smallest of the four heights that from the vertex D, find the locus of the foot of that height.

