## AoPS Community

## Round 4

www.artofproblemsolving.com/community/c2384810
by jasperE3

Problem 1 Prove that the equation

$$
3 x(x-3 y)=y^{2}+z^{2}
$$

doesn't have any integer solutions except $x=0, y=0, z=0$.
Problem 2 Prove that for every four positive numbers $a, b, c, d$ the following inequality is true:

$$
\sqrt{\frac{a^{2}+b^{2}+c^{2}+d^{2}}{4}} \geq \sqrt[3]{\frac{a b c+a b d+a c d+b c d}{4}}
$$

Problem 3 (a) In the plane of the triangle $A B C$, find a point with the following property: its symmetrical points with respect to the midpoints of the sides of the triangle lie on the circumscribed circle.
(b) Construct the triangle $A B C$ if it is known the positions of the orthocenter $H$, midpoint of the side $A B$ and the midpoint of the segment joining the feet of the heights through vertices $A$ and $B$.

Problem 4 It is given a tetrahedron with vertices $A, B, C, D$.
(a) Prove that there exists a vertex of the tetrahedron with the following property: the three edges of that tetrahedron through that vertex can form a triangle.
(b) On the edges $D A, D B$ and $D C$ there are given the points $M, N$ and $P$ for which:

$$
D M=\frac{D A}{n}, \quad D N=\frac{D B}{n+1} \quad D P=\frac{D C}{n+2}
$$

where $n$ is a natural number. The plane defined by the points $M, N$ and $P$ is $\alpha_{n}$. Prove that all planes $\alpha_{n},(n=1,2,3, \ldots)$ pass through a single straight line.

