

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384812 by jasperE3

Problem 1 A 6*n*-digit number is divisible by 7. Prove that if its last digit is moved to the beginning of the number then the new number is also divisible by 7.

Problem 2 Find all *n*-tuples of reals x_1, x_2, \ldots, x_n satisfying the system:

 $\begin{cases} x_1 x_2 \cdots x_n = 1 \\ x_1 - x_2 x_3 \cdots x_n = 1 \\ x_1 x_2 - x_3 x_4 \cdots x_n = 1 \\ \vdots \\ x_1 x_2 \cdots x_{n-1} - x_n = 1 \end{cases}$

Problem 3 There are given two intersecting lines g_1, g_2 and a point P in their plane such that $\angle(g1, g2) \neq 90^\circ$. Its symmetrical points on any point M in the same plane with respect to the given lines are M_1 and M_2 . Prove that:

(a) the locus of the point M for which the points M_1, M_2 and P lie on a common line is a circle k passing through the intersection point of g_1 and g_2 .

(b) the point *P* is an orthocenter of a triangle, inscribed in the circle k whose sides lie at the lines g_1 and g_2 .

Problem 4 Let a_1, b_1, c_1 are three lines each two of them are mutually crossed and aren't parallel to some plane. The lines a_2, b_2, c_2 intersect the lines a_1, b_1, c_1 at the points a_2 in $A, C_2, B_1; b_2$ in C_1 , $B, A_2; c_2$ in B_2, A_1, C respectively in such a way that A is the perpendicular bisector of B_1C_2, B is the perpendicular bisector of C_1A_2 and C is the perpendicular bisector of A_1B_2 . Prove that:

(a) A is the perpendicular bisector of B_2C_1 , B is the perpendicular bisector of C_2A_1 and C is the perpendicular bisector of A_2B_1 ;

(b) triangles $A_1B_1C_1$ and $A_2B_2C_2$ are the same.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.