AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384812
by jasperE3

Problem 1 A $6 n$-digit number is divisible by 7. Prove that if its last digit is moved to the beginning of the number then the new number is also divisible by 7 .

Problem 2 Find all n-tuples of reals $x_{1}, x_{2}, \ldots, x_{n}$ satisfying the system:

$$
\left\{\begin{array}{l}
x_{1} x_{2} \cdots x_{n}=1 \\
x_{1}-x_{2} x_{3} \cdots x_{n}=1 \\
x_{1} x_{2}-x_{3} x_{4} \cdots x_{n}=1 \\
\vdots \\
x_{1} x_{2} \cdots x_{n-1}-x_{n}=1
\end{array}\right.
$$

Problem 3 There are given two intersecting lines g_{1}, g_{2} and a point P in their plane such that $\angle(g 1, g 2) \neq$ 90°. Its symmetrical points on any point M in the same plane with respect to the given lines are M_{1} and M_{2}. Prove that:
(a) the locus of the point M for which the points M_{1}, M_{2} and P lie on a common line is a circle k passing through the intersection point of g_{1} and g_{2}.
(b) the point P is an orthocenter of a triangle, inscribed in the circle k whose sides lie at the lines g_{1} and g_{2}.

Problem 4 Let a_{1}, b_{1}, c_{1} are three lines each two of them are mutually crossed and aren't parallel to some plane. The lines a_{2}, b_{2}, c_{2} intersect the lines a_{1}, b_{1}, c_{1} at the points a_{2} in $A, C_{2}, B_{1} ; b_{2}$ in C_{1}, $B, A_{2} ; c_{2}$ in B_{2}, A_{1}, C respectively in such a way that A is the perpendicular bisector of $B_{1} C_{2}, B$ is the perpendicular bisector of $C_{1} A_{2}$ and C is the perpendicular bisector of $A_{1} B_{2}$. Prove that:
(a) A is the perpendicular bisector of $B_{2} C_{1}, B$ is the perpendicular bisector of $C_{2} A_{1}$ and C is the perpendicular bisector of $A_{2} B_{1}$;
(b) triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are the same.

