## AoPS Community

## Round 4

www.artofproblemsolving.com/community/c2384814
by jasperE3

Problem 1 It is given the expression $y=\frac{x^{2}-2 x+1}{x^{2}-2 x+2}$, where $x$ is a variable. Prove that:
(a) if $x_{1}$ and $x_{2}$ are two values of $x$, the $y_{1}$ and $y_{2}$ are the respective values of $y$ only if $x_{1}<x_{2}$, $y_{1}<y_{2}$;
(b) when $x$ is varying $y$ attains all possible values for which $0 \leq y<1$.

Problem 2 It is given a circle with center $O$ and radius $r . A B$ and $M N$ are two diameters. The lines $M B$ and $N B$ are tangent to the circle at the points $M^{\prime}$ and $N^{\prime}$ and intersect at point $A . M^{\prime \prime}$ and $N^{\prime \prime}$ are the midpoints of the segments $A M^{\prime}$ and $A N^{\prime}$. Prove that:
(a) the points $M, N, N^{\prime}, M^{\prime}$ are concyclic.
(b) the heights of the triangle $M^{\prime \prime} N^{\prime \prime} B$ intersect in the midpoint of the radius $O A$.

Problem 3 It is given a cube with sidelength $a$. Find the surface of the intersection of the cube with a plane, perpendicular to one of its diagonals and whose distance from the centre of the cube is equal to $h$.

Problem 4 There are given a triangle and some internal point $P . x, y, z$ are distances from $P$ to the vertices $A, B$ and $C . p, q, r$ are distances from $P$ to the sides $B C, C A, A B$ respectively. Prove that:

$$
x y z \geq(q+r)(r+p)(p+q) .
$$

