AoPS Community

ELMO Problems 2021

www.artofproblemsolving.com/community/c2390178
by Tintarn, reaganchoi

- Day 1

1 In $\triangle A B C$, points P and Q lie on sides $A B$ and $A C$, respectively, such that the circumcircle of $\triangle A P Q$ is tangent to $B C$ at D. Let E lie on side $B C$ such that $B D=E C$. Line $D P$ intersects the circumcircle of $\triangle C D Q$ again at X, and line $D Q$ intersects the circumcircle of $\triangle B D P$ again at Y. Prove that D, E, X, and Y are concyclic.

2 Let $n>1$ be an integer and let $a_{1}, a_{2}, \ldots, a_{n}$ be integers such that $n \mid a_{i}-i$ for all integers $1 \leq i \leq n$. Prove there exists an infinite sequence b_{1}, b_{2}, \ldots such that

- $b_{k} \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ for all positive integers k, and
- $\sum_{k=1}^{\infty} \frac{b_{k}}{n^{k}}$ is an integer.

3 Each cell of a 100×100 grid is colored with one of 101 colors. A cell is diverse if, among the 199 cells in its row or column, every color appears at least once. Determine the maximum possible number of diverse cells.

- Day 2

4 The set of positive integers is partitioned into n disjoint infinite arithmetic progressions $S_{1}, S_{2}, \ldots, S_{n}$ with common differences $d_{1}, d_{2}, \ldots, d_{n}$, respectively. Prove that there exists exactly one index $1 \leq i \leq n$ such that

$$
\frac{1}{d_{i}} \prod_{j=1}^{n} d_{j} \in S_{i}
$$

5 Let n and k be positive integers. Two infinite sequences $\left\{s_{i}\right\}_{i \geq 1}$ and $\left\{t_{i}\right\}_{i \geq 1}$ are equivalent if, for all positive integers i and $j, s_{i}=s_{j}$ if and only if $t_{i}=t_{j}$. A sequence $\left\{r_{i}\right\}_{i \geq 1}$ has equi-period k if r_{1}, r_{2}, \ldots and r_{k+1}, r_{k+2}, \ldots are equivalent.

Suppose M infinite sequences with equi-period k whose terms are in the set $\{1, \ldots, n\}$ can be chosen such that no two chosen sequences are equivalent to each other. Determine the largest possible value of M in terms of n and k.

6 In $\triangle A B C$, points D, E, and F lie on sides $B C, C A$, and $A B$, respectively, such that each of the quadrilaterals $A F D E, B D E F$, and $C E F D$ has an incircle. Prove that the inradius of $\triangle A B C$ is twice the inradius of $\triangle D E F$.

