

AoPS Community

Silk Road Mathematics Competiton 2021

www.artofproblemsolving.com/community/c2392682 by Rickyminer, Hopeooooo

1 Given a sequence *s* consisting of digits 0 and 1. For any positive integer *k*, define v_k the maximum number of ways in any sequence of length *k* that several consecutive digits can be identified, forming the sequence *s*. (For example, if s = 0110, then $v_7 = v_8 = 2$, because in sequences 0110110 and 01101100 one can find consecutive digits 0110 in two places, and three pairs of 0110 cannot meet in a sequence of length 7 or 8.) It is known that $v_n < v_{n+1} < v_{n+2}$ for some positive integer *n*. Prove that in the sequence *s*, all the numbers are the same.

A. Golovanov

2 For every positive integer *m* prove the inquility $|\{\sqrt{m}\} - \frac{1}{2}| \ge \frac{1}{8(\sqrt{m}+1)}$ (The integer part [*x*] of the number *x* is the largest integer not exceeding *x*. The fractional part of the number *x* is a number $\{x\}$ such that $[x] + \{x\} = x$.)

A. Golovanov

3 In a triangle *ABC*, *M* is the midpoint of the *AB*. A point B_1 is marked on *AC* such that $CB = CB_1$. Circle ω and ω_1 , the circumcircles of triangles *ABC* and *BMB*₁, respectively, intersect again at *K*. Let *Q* be the midpoint of the arc *ACB* on ω . Let B_1Q and *BC* intersect at *E*. Prove that *KC* bisects B_1E .

M. Kungozhin

4 Integers x, y, z, t satisfy $x^2 + y^2 = z^2 + t^2$ and xy = 2zt prove that xyzt = 0

Proposed by *M.Abduvaliev*

