AoPS Community

Silk Road Mathematics Competiton 2021

www.artofproblemsolving.com/community/c2392682
by Rickyminer, Hopeooooo

1 Given a sequence s consisting of digits 0 and 1 . For any positive integer k, define v_{k} the maximum number of ways in any sequence of length k that several consecutive digits can be identified, forming the sequence s. (For example, if $s=0110$, then $v_{7}=v_{8}=2$, because in sequences 0110110 and 01101100 one can find consecutive digits 0110 in two places, and three pairs of 0110 cannot meet in a sequence of length 7 or 8 .) It is known that $v_{n}<v_{n+1}<v_{n+2}$ for some positive integer n. Prove that in the sequence s, all the numbers are the same.
A. Golovanov

2 For every positive integer m prove the inquility $\left|\{\sqrt{m}\}-\frac{1}{2}\right| \geq \frac{1}{8(\sqrt{m}+1)}$
(The integer part $[x]$ of the number x is the largest integer not exceeding x. The fractional part of the number x is a number $\{x\}$ such that $[x]+\{x\}=x$.)
A. Golovanov

3 In a triangle $A B C, M$ is the midpoint of the $A B$. A point B_{1} is marked on $A C$ such that $C B=$ $C B_{1}$. Circle ω and ω_{1}, the circumcircles of triangles $A B C$ and $B M B_{1}$, respectively, intersect again at K. Let Q be the midpoint of the arc $A C B$ on ω. Let $B_{1} Q$ and $B C$ intersect at E. Prove that $K C$ bisects $B_{1} E$.
M. Kungozhin

4 Integers x, y, z, t satisfy $x^{2}+y^{2}=z^{2}+t^{2}$ and $x y=2 z t$ prove that $x y z t=0$
Proposed by M.Abduvaliev

