AoPS Community

www.artofproblemsolving.com/community/c2393490
by jasperE3

- \quad Grade 1

Problem 1 Let n be a natural number. Solve the equation

$$
||\cdots|||x-1|-2|-3|-\ldots-(n-1)|-n|=0 .
$$

Problem 2 Given are real numbers $a<b<c<d$. Determine all permutations p, q, r, s of the numbers a, b, c, d for which the value of the sum

$$
(p-q)^{2}+(q-r)^{2}+(r-s)^{2}+(s-p)^{2}
$$

is minimal.
Problem 3 A chord divides the interior of a circle k into two parts. Variable circles k_{1} and k_{2} are inscribed in these two parts, touching the chord at the same point. Show that the ratio of the radii of circles k_{1} and k_{2} is constant, i.e. independent of the tangency point with the chord.

Problem 4 An infinite sheet of paper is divided into equal squares, some of which are colored red. In each 2×3 rectangle, there are exactly two red squares. Now consider an arbitrary 9×11 rectangle. How many red squares does it contain? (The sides of all considered rectangles go along the grid lines.)

- \quad Grade 2

Problem 1 In a regular hexagon $A B C D E F$ with center O, points M and N are the midpoints of the sides $C D$ and $D E$, and L the intersection point of $A M$ and $B N$. Prove that:
(a) $A B L$ and $D M L N$ have equal areas;
(b) $\angle A L D=\angle O L N=60^{\circ}$;
(c) $\angle O L D=90^{\circ}$.

Problem 2 For any different positive numbers a, b, c prove the inequality

$$
a^{a} b^{b} c^{c}>a^{b} b^{c} c^{a} .
$$

AoPS Community

Problem 3 The number 2^{1997} has m decimal digits, while the number 5^{1997} has n digits. Evaluate $m+n$.

Problem 4 In the plane are given 1997 points. Show that among the pairwise distances between these points, there are at least 32 different values.

- \quad Grade 3

Problem 1 Integers x, y, z and a, b, c satisfy

$$
x^{2}+y^{2}=a^{2}, y^{2}+z^{2}=b^{2} z^{2}+x^{2}=c^{2} .
$$

Prove that the product $x y z$ is divisible by (a) 5 , and (b) 55 .
Problem 2 Prove that for every real number x and positive integer n

$$
|\cos x|+|\cos 2 x|+\left|\cos 2^{2} x\right|+\ldots+\left|\cos 2^{n} x\right| \geq \frac{n}{2 \sqrt{2}}
$$

Problem 3 The areas of the faces $A B D, A C D, B C D, B C A$ of a tetrahedron $A B C D$ are $S_{1}, S_{2}, Q_{1}, Q_{2}$, respectively. The angle between the faces $A B D$ and $A C D$ equals α, and the angle between $B C D$ and $B C A$ is β. Prove that

$$
S_{1}^{2}+S_{2}^{2}-2 S_{1} S_{2} \cos \alpha=Q_{1}^{2}+Q_{2}^{2}-2 Q_{1} Q_{2} \cos \beta
$$

Problem 4 On the sides of a triangle $A B C$ are constructed similar triangles $A B D, B C E, C A F$ with $k=A D / D B=B E / E C=C F / F A$ and $\alpha=\angle A D B=\angle B E C=\angle C F A$. Prove that the midpoints of the segments $A C, B C, C D$ and $E F$ form a parallelogram with an angle α and two sides whose ratio is k.

- \quad Grade 4

Problem 1 Find the last four digits of each of the numbers 3^{1000} and 3^{1997}.
Problem 2 Consider a circle k and a point K in the plane. For any two distinct points P and Q on k, denote by k^{\prime} the circle through P, Q and K. The tangent to k^{\prime} at K meets the line $P Q$ at point M. Describe the locus of the points M when P and Q assume all possible positions.

Problem 3 Function f is defined on the positive integers by $f(1)=1, f(2)=2$ and

$$
f(n+2)=f(n+2-f(n+1))+f(n+1-f(n)) \text { for } n \geq 1 \text {. }
$$

(a) Prove that $f(n+1)-f(n) \in\{0,1\}$ for each $n \geq 1$.
(b) Show that if $f(n)$ is odd then $f(n+1)=f(n)+1$.
(c) For each positive integer k find all n for which $f(n)=2^{k-1}+1$.

Problem 4 Let k be a natural number. Determine the number of non-congruent triangles with the vertices at vertices of a given regular $6 k$-gon.

