

AoPS Community

www.artofproblemsolving.com/community/c2393490 by jasperE3

Grade 1

Problem 1 Let *n* be a natural number. Solve the equation

$$||\cdots||x-1|-2|-3|-\ldots-(n-1)|-n|=0.$$

Problem 2 Given are real numbers a < b < c < d. Determine all permutations p, q, r, s of the numbers a, b, c, d for which the value of the sum

$$(p-q)^{2} + (q-r)^{2} + (r-s)^{2} + (s-p)^{2}$$

is minimal.

- **Problem 3** A chord divides the interior of a circle k into two parts. Variable circles k_1 and k_2 are inscribed in these two parts, touching the chord at the same point. Show that the ratio of the radii of circles k_1 and k_2 is constant, i.e. independent of the tangency point with the chord.
- **Problem 4** An infinite sheet of paper is divided into equal squares, some of which are colored red. In each 2×3 rectangle, there are exactly two red squares. Now consider an arbitrary 9×11 rectangle. How many red squares does it contain? (The sides of all considered rectangles go along the grid lines.)

Problem 1 In a regular hexagon *ABCDEF* with center *O*, points *M* and *N* are the midpoints of the sides *CD* and *DE*, and *L* the intersection point of *AM* and *BN*. Prove that:

(a) ABL and DMLN have equal areas; (b) $\angle ALD = \angle OLN = 60^{\circ}$; (c) $\angle OLD = 90^{\circ}$.

Problem 2 For any different positive numbers *a*, *b*, *c* prove the inequality

 $a^a b^b c^c > a^b b^c c^a$.

⁻ Grade 2

AoPS Community

1997 Croatia National Olympiad

Problem 3 The number 2^{1997} has *m* decimal digits, while the number 5^{1997} has *n* digits. Evaluate m + n.

Problem 4 In the plane are given 1997 points. Show that among the pairwise distances between these points, there are at least 32 different values.

Grade 3

Problem 1 Integers x, y, z and a, b, c satisfy

 $x^{2} + y^{2} = a^{2}, y^{2} + z^{2} = b^{2} z^{2} + x^{2} = c^{2}.$

Prove that the product xyz is divisible by (a) 5, and (b) 55.

Problem 2 Prove that for every real number x and positive integer n

 $|\cos x| + |\cos 2x| + |\cos 2^2 x| + \ldots + |\cos 2^n x| \ge \frac{n}{2\sqrt{2}}.$

Problem 3 The areas of the faces ABD, ACD, BCD, BCA of a tetrahedron ABCD are S_1, S_2, Q_1, Q_2 , respectively. The angle between the faces ABD and ACD equals α , and the angle between BCD and BCA is β . Prove that

 $S_1^2 + S_2^2 - 2S_1S_2\cos\alpha = Q_1^2 + Q_2^2 - 2Q_1Q_2\cos\beta.$

Problem 4 On the sides of a triangle *ABC* are constructed similar triangles *ABD*, *BCE*, *CAF* with k = AD/DB = BE/EC = CF/FA and $\alpha = \angle ADB = \angle BEC = \angle CFA$. Prove that the midpoints of the segments *AC*, *BC*, *CD* and *EF* form a parallelogram with an angle α and two sides whose ratio is k.

Grade 4

Problem 1 Find the last four digits of each of the numbers 3^{1000} and 3^{1997} .

Problem 2 Consider a circle k and a point K in the plane. For any two distinct points P and Q on k, denote by k' the circle through P, Q and K. The tangent to k' at K meets the line PQ at point M. Describe the locus of the points M when P and Q assume all possible positions.

Problem 3 Function f is defined on the positive integers by f(1) = 1, f(2) = 2 and

f(n+2) = f(n+2 - f(n+1)) + f(n+1 - f(n)) for $n \ge 1$.

AoPS Community

1997 Croatia National Olympiad

(a) Prove that $f(n+1) - f(n) \in \{0, 1\}$ for each $n \ge 1$.

- (b) Show that if f(n) is odd then f(n + 1) = f(n) + 1.
- (c) For each positive integer k find all n for which $f(n) = 2^{k-1} + 1$.

Problem 4 Let k be a natural number. Determine the number of non-congruent triangles with the vertices at vertices of a given regular 6k-gon.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.