AoPS Community

www.artofproblemsolving.com/community/c2393511
by HamstPan38825

Problem 1 Given two vectors \vec{a}, \vec{b}, find the range of possible values of $\|\vec{a}-2 \vec{b}\|$ where $\|\vec{v}\|$ denotes the magnitude of a vector \vec{v}.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 1)
Problem 2 Compute the value of

$$
\sin ^{2} 20^{\circ}+\cos ^{2} 50^{\circ}+\sin 20^{\circ} \cos 50^{\circ}
$$

(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 2)
Problem 3 There exists complex numbers $z=x+y i$ such that the point (x, y) lies on the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$. If $\frac{z-1-i}{z-i}$ is real, compute z.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 3)
Problem 4 When the expression

$$
(x y-5 x+3 y-15)^{n}
$$

for some positive integer n is expanded and like terms are combined, the expansion contains at least 2021 distinct terms. Compute the minimum possible value of n.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 4)
Problem 5 Define the regions M, N in the Cartesian Plane as follows:

$$
\begin{aligned}
M & =\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq \min (2 x, 3-x)\right\} \\
N & =\left\{(x, y) \in \mathbb{R}^{2} \mid t \leq x \leq t+2\right\}
\end{aligned}
$$

for some real number t. Denote the common area of M and N for some t be $f(t)$. Compute the algebraic form of the function $f(t)$ for $0 \leq t \leq 1$.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 5)
Problem 6 A sequence $\left\{a_{n}\right\}$ satisfies

$$
a_{0}=0, a_{1}=a_{2}=1, a_{3 n}=a_{n}, a_{3 n+1}=a_{3 n+2}=a_{n}+1
$$

for all $n \geq 1$. Compute a_{2021}.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 6)

Problem 7 For two sets A, B, define the operation

$$
A \otimes B=\{x \mid x=a b+a+b, a \in A, b \in B\}
$$

Set $A=\{0,2,4, \cdots, 18\}$ and $B=\{98,99,100\}$. Compute the sum of all the elements in $A \otimes B$. (Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 7)

Problem $8 \ln \triangle A B C, \angle B=\angle C=30^{\circ}$ and $B C=2 \sqrt{3}$. P, Q lie on segments $\overline{A B}, \overline{A C}$ such that $A P=1$ and $A Q=\sqrt{2}$. Let D be the foot of the altitude from A to $B C$. We fold $\triangle A B C$ along line $A D$ in three dimensions such that the dihedral angle between planes $A D B$ and $A D C$ equals 60 degrees. Under this transformation, compute the length $P Q$.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 8)
Problem 9 Let $\triangle A B C$ have its vertices at $A(0,0), B(7,0), C(3,4)$ in the Cartesian plane. Construct a line through the point $(6-2 \sqrt{2}, 3-\sqrt{2})$ that intersects segments $A C, B C$ at P, Q respectively. If $[P Q C]=\frac{14}{3}$, what is $|C P|+|C Q|$?
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 9)
Problem 10 Define the sequence a_{n} by the rule

$$
a_{n+1}=\left\lfloor\frac{a_{n}}{2}\right\rfloor+\left\lfloor\frac{a_{n}}{3}\right\rfloor
$$

for $n \in\{1,2,3,4,5,6,7\}$, where $\lfloor x\rfloor$ denotes the greatest integer not greater than x. If $a_{8}=8$, how many possible values are there for a_{1} given that it is a positive integer?
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 10)
Problem 11 The function $f(x)=x^{2}+a x+b$ has two distinct zeros. If $f\left(x^{2}+2 x-1\right)=0$ has four distinct zeros $x_{1}<x_{2}<x_{3}<x_{4}$ that form an arithmetic sequence, compute the range of $a-b$.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 11)
Problem 12 Let C be the left vertex of the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ in the Cartesian Plane. For some real number k, the line $y=k x+1$ meets the ellipse at two distinct points A, B.
(i) Compute the maximum of $|C A|+|C B|$.
(ii) Let the line $y=k x+1$ meet the x and y axes at M and N, respectively. If the intersection of the perpendicular bisector of $M N$ and the circle with diameter $M N$ lies inside the given ellipse, compute the range of possible values of k.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 12)

Problem 13 Let n be a given positive integer. The sequence of real numbers $a_{1}, a_{2}, a_{3}, \cdots, a_{n}$ satisfy for each $m \leq n$,

$$
\left|\sum_{k=1}^{m} \frac{a_{k}}{k}\right| \leq 1
$$

Given this information, find the greatest possible value of $\left|\sum_{k=1}^{n} a_{k}\right|$.
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 13)
Problem 14 Define the set $P=\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}\right\}$ and its arithmetic mean

$$
C_{p}=\frac{a_{1}+a_{2}+\cdots+a_{m}}{m} .
$$

If we divide $S=\{1,2,3, \cdots, n\}$ into two disjoint subsets A, B, compute the greatest possible value of $\left|C_{A}-C_{B}\right|$. For how many (A, B) is equality attained?
(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 14)
Problem 15 Positive real numbers x, y, z satisfy $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$. Prove that

$$
\frac{x^{4}+y^{2} z^{2}}{x^{\frac{5}{2}}(y+z)}+\frac{y^{4}+z^{2} x^{2}}{y^{\frac{5}{2}}(z+x)}+\frac{z^{4}+y^{2} x^{2}}{z^{\frac{5}{2}}(y+x)} \geq 1 .
$$

(Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 15)

