AoPS Community

2020-2021, served also as Greek JBMO TST since the latter didn't take place

www.artofproblemsolving.com/community/c2399561
by parmenides51

1 If positive reals x, y are such that $2(x+y)=1+x y$, find the minimum value of expression

$$
A=x+\frac{1}{x}+y+\frac{1}{y}
$$

2 Anna and Basilis play a game writing numbers on a board as follows:
The two players play in turns and if in the board is written the positive integer n, the player whose turn is chooses a prime divisor p of n and writes the numbers $n+p$. In the board, is written at the start number 2 and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to 31 .
Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

3 Determine whether exists positive integer n such that the number $A=8^{n}+47$ is prime.
4 Given a triangle $A B C$ with $A B<B C<A C$ inscribed in circle (c). The circle $c(A, A B)$ (with center A and radius $A B$) interects the line $B C$ at point D and the circle (c) at point H. The circle $c(A, A C)$ (with center A and radius $A C$) interects the line $B C$ at point Z and the circle (c) at point E. Lines $Z H$ and $E D$ intersect at point T. Prove that the circumscribed circles of triangles $T D Z$ and $T E H$ are equal.

