Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c2405424
by parmenides51, dangerousliri, IndoMathXdZ, vvluo

- \quad day 1

1 Let $n \geq 2$ be a fixed positive integer. Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be fixed positive integers whose sum is $2 n-1$. Denote by $S_{\mathbb{A}}$ the sum of elements of a set A. Find the minimal and maximal value of $S_{\mathbb{X}} \cdot S_{\mathbb{Y}}$ where \mathbb{X} and \mathbb{Y} are two sets with the property that $\mathbb{X} \cup \mathbb{Y}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\mathbb{X} \cap \mathbb{Y}=\emptyset$.
[i]Note: \mathbb{X} and \mathbb{Y} can have multiple equal elements. For example, when $n=5$ and $a_{1}=\ldots=$ $a_{4}=1$ and $a_{5}=5$, we can consider $\mathbb{X}=\{1,1,1\}$ and $\mathbb{Y}=\{1,5\}$. Moreover, in this case, $S_{\mathbb{X}}=3$ and $S_{\mathbb{Y}}=6 .[/ \mathrm{i}]$

2 Angle bisector at A, altitude from B to $C A$ and altitude of C to $A B$ on a scalene triangle $A B C$ forms a triangle \triangle. Let P and Q points on lines $A B$ and $A C$, respectively, such that the midpoint of segment $P Q$ is the orthocenter of the triangle \triangle. Prove that the points B, C, P and Q lie on a circle.
$3 \quad$ Let \mathcal{S} be a set consisting of $n \geq 3$ positive integers, none of which is a sum of two other distinct members of \mathcal{S}. Prove that the elements of \mathcal{S} may be ordered as $a_{1}, a_{2}, \ldots, a_{n}$ so that a_{i} does not divide $a_{i-1}+a_{i+1}$ for all $i=2,3, \ldots, n-1$.

- day 2

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers x and y satisfies,

$$
2+f(x) f(y) \leq x y+2 f(x+y+1)
$$

5 Find all positive integers n such that the number $n^{5}+79$ has all the same digits when it is written in decimal represantation.
$6 \quad$ Let p be an odd prime, and put $N=\frac{1}{4}\left(p^{3}-p\right)-1$. The numbers $1,2, \ldots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N$, denote $r(n)$ the fraction of integers $\{1,2, \ldots, n\}$ that are red.
Prove that there exists a positive integer $a \in\{1,2, \ldots, p-1\}$ such that $r(n) \neq a / p$ for all $n=1,2, \ldots, N$.

Netherlands

