

AoPS Community

2021 Albanians Cup in Mathematics

www.artofproblemsolving.com/community/c2405424 by parmenides51, dangerousliri, IndoMathXdZ, vvluo

-	day 1
1	Let $n \ge 2$ be a fixed positive integer. Let $\{a_1, a_2,, a_n\}$ be fixed positive integers whose sum is $2n - 1$. Denote by $S_{\mathbb{A}}$ the sum of elements of a set A . Find the minimal and maximal value of $S_{\mathbb{X}} \cdot S_{\mathbb{Y}}$ where \mathbb{X} and \mathbb{Y} are two sets with the property that $\mathbb{X} \cup \mathbb{Y} = \{a_1, a_2,, a_n\}$ and $\mathbb{X} \cap \mathbb{Y} = \emptyset$.
	[i]Note: \mathbb{X} and \mathbb{Y} can have multiple equal elements. For example, when $n = 5$ and $a_1 = = a_4 = 1$ and $a_5 = 5$, we can consider $\mathbb{X} = \{1, 1, 1\}$ and $\mathbb{Y} = \{1, 5\}$. Moreover, in this case, $S_{\mathbb{X}} = 3$ and $S_{\mathbb{Y}} = 6$.[/i]
2	Angle bisector at A , altitude from B to CA and altitude of C to AB on a scalene triangle ABC forms a triangle \triangle . Let P and Q points on lines AB and AC , respectively, such that the midpoint of segment PQ is the orthocenter of the triangle \triangle . Prove that the points B, C, P and Q lie on a circle.
3	Let S be a set consisting of $n \ge 3$ positive integers, none of which is a sum of two other distinct members of S . Prove that the elements of S may be ordered as a_1, a_2, \ldots, a_n so that a_i does not divide $a_{i-1} + a_{i+1}$ for all $i = 2, 3, \ldots, n-1$.
-	day 2
4	Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for all real numbers x and y satisfies,
	$2 + f(x)f(y) \le xy + 2f(x + y + 1).$
5	Find all positive integers n such that the number $n^5 + 79$ has all the same digits when it is written in decimal representation.

6 Let p be an odd prime, and put $N = \frac{1}{4}(p^3 - p) - 1$. The numbers 1, 2, ..., N are painted arbitrarily in two colors, red and blue. For any positive integer $n \le N$, denote r(n) the fraction of integers $\{1, 2, ..., n\}$ that are red. Prove that there exists a positive integer $a \in \{1, 2, ..., p - 1\}$ such that $r(n) \ne a/p$ for all n = 1, 2, ..., N.

Netherlands

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.