AoPS Community

Peru IMO TST 2020

www.artofproblemsolving.com/community/c2413842
by parmenides51, MathLuis, Jjesus, ilovemath04, nukelauncher

- Day 1

1 Find all pairs (m, n) of positive integers numbers with $m>1$ such that:
For any positive integer $b \leq m$ that is not coprime with m, its posible choose positive integers $a_{1}, a_{2}, \cdots, a_{n}$ all coprimes with m such that:

$$
m+a_{1} b+a_{2} b^{2}+\cdots+a_{n} b^{n}
$$

Is a perfect power.
Note: A perfect power is a positive integer represented by a^{k}, where a and k are positive integers with $k>1$

2 Let $A B C D E$ be a convex pentagon with $C D=D E$ and $\angle E D C \neq 2 \cdot \angle A D B$.
Suppose that a point P is located in the interior of the pentagon such that $A P=A E$ and $B P=B C$.
Prove that P lies on the diagonal $C E$ if and only if area $(B C D)+$ area $(A D E)=$ area $(A B D)+$ area $(A B P)$.
(Hungary)
3 Given a positive integer n, let M be the set of all points in space with integer coordinates (a, b, c) such that $0 \leq a, b, c \leq n$. A frog must go to the point $(0,0,0)$ to the point (n, n, n) according to the following rules:

- The frog can only jump to points of M.
- In each jump, the frog can go from point (a, b, c) to one of the following points: $(a+1, b, c)$, $(a, b+1, c),(a, b, c+1)$, or $(a, b, c-1)$.
- The frog cannot pass through the same point more than once.

In how many different ways can the frog achieve its goal?

- Day 2
$4 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(a)^{b f\left(b^{2}\right)} \leq a^{f(b)^{3}} \quad \text { for all } a, b \in \mathbb{N} .
$$

5 You are given a set of n blocks, each weighing at least 1 ; their total weight is $2 n$. Prove that for every real number r with $0 \leq r \leq 2 n-2$ you can choose a subset of the blocks whose total weight is at least r but at most $r+2$.
$6 \quad$ Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that $a+f(b)$ divides $a^{2}+b f(a)$ for all positive integers a and b with $a+b>2019$.

