Art of Problem Solving

AoPS Community

2021 South East Mathematical Olympiad

South East Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c2417332
by Henry_2001, Generals, a22886, sqing

- \quad Grade 10
- \quad Day 1

1 A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=\frac{1}{2}$, and for $n \geq 2,0<a_{n} \leq a_{n-1}$ and

$$
a_{n}^{2}\left(a_{n-1}+1\right)+a_{n-1}^{2}\left(a_{n}+1\right)-2 a_{n} a_{n-1}\left(a_{n} a_{n-1}+a_{n}+1\right)=0 .
$$

(1) Determine the general formula of the sequence $\left\{a_{n}\right\}$; (2) Let $S_{n}=a_{1}+\cdots+a_{n}$. Prove that for $n \geq 1, \ln \left(\frac{n}{2}+1\right)<S_{n}<\ln (n+1)$.

2 In $\triangle A B C, A B=A C>B C$, point O, H are the circumcenter and orthocenter of $\triangle A B C$ respectively, G is the midpoint of segment $A H, B E$ is the altitude on $A C$. Prove that if $O E \| B C$, then H is the incenter of $\triangle G B C$.

3 Let p be an odd prime and $\left\{u_{i}\right\}_{i \geq 0}$ be an integer sequence.
Let $v_{n}=\sum_{i=0}^{n} C_{n}^{i} p^{i} u_{i}$ where C_{n}^{i} denotes the binomial coefficients.
If $v_{n}=0$ holds for infinitely many n, prove that it holds for every positive integer n.
4 Suppose there are $n \geq 5$ different points arbitrarily arranged on a circle, the labels are $1,2, \ldots$, and n, and the permutation is S. For a permutation , a "descending chain" refers to several consecutive points on the circle, and its labels is a clockwise descending sequence (the length of sequence is at least 2), and the descending chain cannot be extended to longer . The point with the largest label in the chain is called the "starting point of descent", and the other points in the chain are called the "non-starting point of descent" . For example: there are two descending chains 5,2 and 4,1 in $5,2,4,1,3$ arranged in a clockwise direction, and 5 and 4 are their starting points of descent respectively, and 2,1 is the non-starting point of descent. Consider the following operations: in the first round, find all descending chains in the permutation S, delete all non-starting points of descent, and then repeat the first round of operations for the arrangement of the remaining points, until no more descending chains can be found. Let $G(S)$ be the number of all descending chains that permutation S has appeared in the operations, $A(S)$ be the average value of $G(S)$ of all possible n-point permutations S.
(1) Find $A(5)$.
(2)For $n \geq 6$, prove that $\frac{83}{120} n-\frac{1}{2} \leq A(S) \leq \frac{101}{120} n-\frac{1}{2}$.

- Day 2

5 To commemorate the 43 rd anniversary of the restoration of mathematics competitions, a mathematics enthusiast arranges the first 2021 integers $1,2, \ldots, 2021$ into a sequence $\left\{a_{n}\right\}$ in a certain order, so that the sum of any consecutive 43 items in the sequence is a multiple of 43.
(1) If the sequence of numbers is connected end to end into a circle, prove that the sum of any consecutive 43 items on the circle is also a multiple of 43 ;
(2) Determine the number of sequences $\left\{a_{n}\right\}$ that meets the conditions of the question.

6 Let $A B C D$ be a cyclic quadrilateral. Let E be a point on side $B C, F$ be a point on side $A E, G$ be a point on the exterior angle bisector of $\angle B C D$, such that $E G=F G, \angle E A G=\frac{1}{2} \angle B A D$. Prove that $A B \cdot A F=A D \cdot A E$.

7 Let a, b, c be pairwise distinct positive real, Prove that

$$
\frac{a b+b c+c a}{(a+b)(b+c)(c+a)}<\frac{1}{7}\left(\frac{1}{|a-b|}+\frac{1}{|b-c|}+\frac{1}{|c-a|}\right) .
$$

8 Determine all the pairs of positive integers (a, b), such that

$$
14 \varphi^{2}(a)-\varphi(a b)+22 \varphi^{2}(b)=a^{2}+b^{2}
$$

where $\varphi(n)$ is Euler's totient function.

- \quad Grade 11
- \quad Day 1

1 Same as Grade 10 P2

2 Let $p \geq 5$ be a prime number, and set $M=\{1,2, \cdots, p-1\}$. Define

$$
T=\left\{\left(n, x_{n}\right): p \mid n x_{n}-1 \text { and } n, x_{n} \in M\right\} .
$$

If $\sum_{\left(n, x_{n}\right) \in T} n\left[\frac{n x_{n}}{p}\right] \equiv k(\bmod p)$, with $0 \leq k \leq p-1$, where $[\alpha]$ denotes the largest integer that does not exceed α, determine the value of k.

3 Let $a, b, c \geq 0$ and $a^{2}+b^{2}+c^{2} \leq 1$. Prove that

$$
\frac{a}{a^{2}+b c+1}+\frac{b}{b^{2}+c a+1}+\frac{c}{c^{2}+a b+1}+3 a b c<\sqrt{3}
$$

4 For positive integer k, we say that it is a Taurus integer if we can delete one element from the set $M_{k}=\{1,2, \cdots, k\}$, such that the sum of remaining $k-1$ elements is a positive perfect square. For example, 7 is a Taurus integer, because if we delete 3 from $M_{7}=\{1,2,3,4,5,6,7\}$, the sum of remaining 6 elements is 25 , which is a positive perfect square. (1) Determine whether 2021 is a Taurus integer. (2) For positive integer n, determine the number of Taurus integers in $\{1,2, \cdots, n\}$.

- Day 2

5 Let $A=\left\{a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}\right\}$ be a set with $2 n$ distinct elements, and $B_{i} \subseteq A$ for any $i=1,2, \cdots, m$. If $\bigcup_{i=1}^{m} B_{i}=A$, we say that the ordered m-tuple ($B_{1}, B_{2}, \cdots, B_{m}$) is an ordered m-covering of A. If $\left(B_{1}, B_{2}, \cdots, B_{m}\right)$ is an ordered m-covering of A, and for any $i=1,2, \cdots, m$ and any $j=1,2, \cdots, n,\left\{a_{j}, b_{j}\right\}$ is not a subset of B_{i}, then we say that ordered m-tuple $\left(B_{1}, B_{2}, \cdots, B_{m}\right)$ is an ordered m-covering of A without pairs. Define $a(m, n)$ as the number of the ordered m-coverings of A, and $b(m, n)$ as the number of the ordered m-coverings of A without pairs. (1) Calculate $a(m, n)$ and $b(m, n)$. (2) Let $m \geq 2$, and there is at least one positive integer n, such that $\frac{a(m, n)}{b(m, n)} \leq 2021$, Determine the greatest possible values of m.

6 Let $A B C D$ be a cyclic quadrilateral. The internal angle bisector of $\angle B A D$ and line $B C$ intersect at $E . M$ is the midpoint of segment $A E$. The exterior angle bisector of $\angle B C D$ and line $A D$ intersect at F. The lines $M F$ and $A B$ intersect at G. Prove that if $A B=2 A D$, then $M F=2 M G$.

7 Determine all the pairs of positive odd integers (a, b), such that $a, b>1$ and

$$
7 \varphi^{2}(a)-\varphi(a b)+11 \varphi^{2}(b)=2\left(a^{2}+b^{2}\right),
$$

where $\varphi(n)$ is Euler's totient function.
8 A sequence $\left\{z_{n}\right\}$ satisfies that for any positive integer $i, z_{i} \in\{0,1, \cdots, 9\}$ and $z_{i} \equiv i-1$ (mod 10). Suppose there is 2021 non-negative reals $x_{1}, x_{2}, \cdots, x_{2021}$ such that for $k=1,2, \cdots, 2021$,

$$
\sum_{i=1}^{k} x_{i} \geq \sum_{i=1}^{k} z_{i}, \sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} z_{i}+\sum_{j=1}^{10} \frac{10-j}{50} z_{k+j}
$$

Determine the least possible value of $\sum_{i=1}^{2021} x_{i}^{2}$.

