

AoPS Community

1993 Bulgaria National Olympiad

Bulgaria National Olympiad 1993, Round 4

www.artofproblemsolving.com/community/c2418618 by parmenides51, Karth

– Day 1

Find all functions *f* , defined and having values in the set of integer numbers, for which the following conditions are satisfied:
(a) *f*(1) = 1;

(b) for every two whole (integer) numbers m and n, the following equality is satisfied:

f(m+n)(f(m) - f(n)) = f(m-n)(f(m) + f(n))

- **2** Let *M* be an interior point of the triangle *ABC* such that $AMC = 90^{\circ}$, $AMB = 150^{\circ}$, and $BMC = 120^{\circ}$. The circumcenters of the triangles *AMC*, *AMB*, and *BMC* are *P*, *Q*, and *R* respectively. Prove that the area of ΔPQR is greater than or equal to the area of ΔABC .
- 3 it is given a polyhedral constructed from two regular pyramids with bases heptagons (a polygon with 7 vertices) with common base $A_1A_2A_3A_4A_5A_6A_7$ and vertices respectively the points B and C. The edges BA_i , CA_i (i = 1, ..., 7), diagonals of the common base are painted in blue or red. Prove that there exists three vertices of the polyhedral given which forms a triangle with all sizes in the same color.
- Day 2
- **4** Find all natural numbers n > 1 for which there exists such natural numbers $a_1, a_2, ..., a_n$ for which the numbers $\{a_i + a_j | 1 \le i \le j \le n\}$ form a full system modulo $\frac{n(n+1)}{2}$.

5 Let Oxy be a fixed rectangular coordinate system in the plane. Each ordered pair of points A_1, A_2 from the same plane which are different from 0 and have coordinates x_1, y_1 and x_2, y_2 respectively is associated with real number $f(A_1, A_2)$ in such a way that the following conditions are satisfied:

(a) If $OA_1 = OB_1$, $OA_2 = OB_2$ and $A_1A_2 = B_1B_2$ then $f(A_1, A_2) = f(B_1, B_2)$.

(b) There exists a polynomial of second degree F(u, v, w, z) such that $f(A_1, A_2) = F(x_1, y_1, x_2, y_2)$.

(c) There exists such a number $\phi \in (0, \pi)$ that for every two points A_1, A_2 for which $\angle A_1OA_2 = \phi$ is satisfied $f(A_1, A_2) = 0$.

(d) If the points A_1, A_2 are such that the triangle OA_1A_2 is equilateral with side 1 then $f(A_1, A_2) = \frac{1}{2}$.

AoPS Community

1993 Bulgaria National Olympiad

Prove that $f(A_1, A_2) = \overrightarrow{OA_1} \cdot \overrightarrow{OA_2}$ for each ordered pair of points A_1, A_2 .

6 Find all natural numbers n for which there exists set S consisting of n points in the plane, satisfying the condition:

For each point $A \in S$ there exist at least three points say X, Y, Z from S such that the segments AX, AY and AZ have length 1 (it means that AX = AY = AZ = 1).

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.