AoPS Community

Bulgaria National Olympiad 1993, Round 4

www.artofproblemsolving.com/community/c2418618
by parmenides51, Karth

- Day 1

1 Find all functions f, defined and having values in the set of integer numbers, for which the following conditions are satisfied:
(a) $f(1)=1$;
(b) for every two whole (integer) numbers m and n, the following equality is satisfied:

$$
f(m+n)(f(m)-f(n))=f(m-n)(f(m)+f(n))
$$

2 Let M be an interior point of the triangle $A B C$ such that $A M C=90^{\circ}, A M B=150^{\circ}$, and $B M C=120^{\circ}$. The circumcenters of the triangles $A M C, A M B$, and $B M C$ are P, Q, and R respectively. Prove that the area of $\triangle P Q R$ is greater than or equal to the area of $\triangle A B C$.

3 it is given a polyhedral constructed from two regular pyramids with bases heptagons (a polygon with 7 vertices) with common base $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7}$ and vertices respectively the points B and C. The edges $B A_{i}, C A_{i}(i=1, \ldots, 7)$, diagonals of the common base are painted in blue or red. Prove that there exists three vertices of the polyhedral given which forms a triangle with all sizes in the same color.

- Day 2

4 Find all natural numbers $n>1$ for which there exists such natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ for which the numbers $\left\{a_{i}+a_{j} \mid 1 \leq i \leq j \leq n\right\}$ form a full system modulo $\frac{n(n+1)}{2}$.

5 Let $O x y$ be a fixed rectangular coordinate system in the plane.
Each ordered pair of points A_{1}, A_{2} from the same plane which are different from 0 and have coordinates x_{1}, y_{1} and x_{2}, y_{2} respectively is associated with real number $f\left(A_{1}, A_{2}\right)$ in such a way that the following conditions are satisfied:
(a) If $O A_{1}=O B_{1}, O A_{2}=O B_{2}$ and $A_{1} A_{2}=B_{1} B_{2}$ then $f\left(A_{1}, A_{2}\right)=f\left(B_{1}, B_{2}\right)$.
(b) There exists a polynomial of second degree $F(u, v, w, z)$ such that $f\left(A_{1}, A_{2}\right)=F\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$.
(c) There exists such a number $\phi \in(0, \pi)$ that for every two points A_{1}, A_{2} for which $\angle A_{1} O A_{2}=\phi$ is satisfied $f\left(A_{1}, A_{2}\right)=0$.
(d) If the points A_{1}, A_{2} are such that the triangle $O A_{1} A_{2}$ is equilateral with side 1 then $f\left(A_{1}, A_{2}\right)=$ $\frac{1}{2}$.

Prove that $f\left(A_{1}, A_{2}\right)=\overrightarrow{O A_{1}} \cdot \overrightarrow{O A_{2}}$ for each ordered pair of points A_{1}, A_{2}.
6 Find all natural numbers n for which there exists set S consisting of n points in the plane, satisfying the condition:
For each point $A \in S$ there exist at least three points say X, Y, Z from S such that the segments $A X, A Y$ and $A Z$ have length 1 (it means that $A X=A Y=A Z=1$).

