Art of Problem Solving

AoPS Community

Bulgaria National Olympiad 1994, Round 4

www.artofproblemsolving.com/community/c2418633
by parmenides51, mathisreal, heron1000

- \quad Day 1

1 Two circles $k_{1}\left(O_{1}, R\right)$ and $k_{2}\left(O_{2}, r\right)$ are given in the plane such that $R \geq \sqrt{2} r$ and

$$
O_{1} O_{2}=\sqrt{R^{2}+r^{2}-r \sqrt{4 R^{2}+r^{2}}} .
$$

Let A be an arbitrary point on k_{1}. The tangents from A to k_{2} touch k_{2} at B and C and intersect k_{1} again at D and E, respectively. Prove that $B D \cdot C E=r^{2}$

2 Find all functions $f: R \rightarrow R$ such that $x f(x)-y f(y)=(x-y) f(x+y)$ for all $x, y \in R$.
3 Let p be a prime number, determine all positive integers (x, y, z) such that: $x^{p}+y^{p}=p^{z}$

- Day 2

4 Let $A B C$ be a triangle with incenter I, and let the tangency points of its incircle with its sides $A B, B C, C A$ be C^{\prime}, A^{\prime} and B^{\prime} respectively. Prove that the circumcenters of $A I A^{\prime}, B I B^{\prime}$, and $C I C^{\prime}$ are collinear.
$5 \quad$ Let k be a positive integer and r_{n} be the remainder when $\binom{2 n}{n}$ is divided by k. Find all k for which the sequence $\left(r_{n}\right)_{n=1}^{\infty}$ is eventually periodic.

6 Let n be a positive integer and A be a family of subsets of the set $\{1,2, \ldots, n\}$, none of which contains another subset from A . Find the largest possible cardinality of A.

