Art of Problem Solving

AoPS Community

Saudi Arabia IMO Team Selection Test 2021

www.artofproblemsolving.com/community/c2420162
by parmenides51, Eyed, popcorn1, geometry6, MathLuis, Aryan-23, mathleticguyyy, vvluo

- Day I
$1 \quad$ For a non-empty set T denote by $p(T)$ the product of all elements of T. Does there exist a set T of 2021 elements such that for any $a \in T$ one has that $P(T)-a$ is an odd integer? Consider two cases:

1) All elements of T are irrational numbers.
2) At least one element of T is a rational number.

2 Find all positive integers n, such that n is a perfect number and $\varphi(n)$ is power of 2 .
[i]Note:a positive integer n, is called perfect if the sum of all its positive divisors is equal to $2 n$. [/i]

3 Let $A B C$ be a triangle with $A B<A C$, incenter I, and A excenter I_{A}. The incircle meets $B C$ at D. Define $E=A D \cap B I_{A}, F=A D \cap C I_{A}$. Show that the circumcircle of $\triangle A I D$ and $\triangle I_{A} E F$ are tangent to each other

- Day II

4 In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals Q_{1}, \ldots, Q_{24} whose corners are vertices of the $100-$ gon, so that

- the quadrilaterals Q_{1}, \ldots, Q_{24} are pairwise disjoint, and - every quadrilateral Q_{i} has three corners of one color and one corner of the other color.

5 Let $A B C$ be a non isosceles triangle with incenter I. The circumcircle of the triangle $A B C$ has radius R. Let $A L$ be the external angle bisector of $\angle B A C$ with $L \in B C$. Let K be the point on perpendicular bisector of $B C$ such that $I L \perp I K$. Prove that $O K=3 R$.
$6 \quad$ Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f^{a^{2}+b^{2}}(a+b)=a f(a)+b f(b)
$$

for all integers a and b

- Day III

7 Let $A B C$ be an isosceles triangle with $B C=C A$, and let D be a point inside side $A B$ such that $A D<D B$. Let P and Q be two points inside sides $B C$ and $C A$, respectively, such that $\angle D P B=\angle D Q A=90^{\circ}$. Let the perpendicular bisector of $P Q$ meet line segment $C Q$ at E, and let the circumcircles of triangles $A B C$ and $C P Q$ meet again at point F, different from C.
Suppose that P, E, F are collinear. Prove that $\angle A C B=90^{\circ}$.
8 The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined inductively by $F_{0}=0, F_{1}=1$, and $F_{n+1}=$ $F_{n}+F_{n-1}$ for $n \geq 1$. Given an integer $n \geq 2$, determine the smallest size of a set S of integers such that for every $k=2,3, \ldots, n$ there exist some $x, y \in S$ such that $x-y=F_{k}$.

Proposed by Croatia
9
For a positive integer n, let $d(n)$ be the number of positive divisors of n, and let $\varphi(n)$ be the number of positive integers not exceeding n which are coprime to n. Prove that for any number C, there exist an integer n for which

$$
\frac{\varphi(d(n))}{d(\varphi(n))}>C
$$

variation was used in Saudi Arabia IMO TST

- Day IV

10 Given a positive integer k show that there exists a prime p such that one can choose distinct integers $a_{1}, a_{2} \cdots, a_{k+3} \in\{1,2, \cdots, p-1\}$ such that p divides $a_{i} a_{i+1} a_{i+2} a_{i+3}-i$ for all $i=$ $1,2, \cdots, k$.

South Africa

11 Suppose that a, b, c, d are positive real numbers satisfying $(a+c)(b+d)=a c+b d$. Find the smallest possible value of

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}
$$

Israel
12 Let p be an odd prime, and put $N=\frac{1}{4}\left(p^{3}-p\right)-1$. The numbers $1,2, \ldots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N$, denote $r(n)$ the fraction of integers $\{1,2, \ldots, n\}$ that are red.
Prove that there exists a positive integer $a \in\{1,2, \ldots, p-1\}$ such that $r(n) \neq a / p$ for all $n=1,2, \ldots, N$.

Netherlands

