

AoPS Community

www.artofproblemsolving.com/community/c2420267

by jasperE3, mastersail, Johann Peter Dirichlet, justkeeptrying

– Day 1

Problem 1 Let R > 0, be an integer, and let n(R) be the number um triples $(x, y, z) \in \mathbb{Z}^3$ such that $2x^2 + 3y^2 + 5z^2 = R$. What is the value of

 $\lim_{R\rightarrow\infty}\frac{n(1)+n(2)+\cdots+n(R)}{R^{3/2}}$?

Problem 2 For a positive integer *a*, define $F_1^{(a)} = 1$, $F_2^{(a)} = a$ and for n > 2, $F_n^{(a)} = F_{n-1}^{(a)} + F_{n-2}^{(a)}$. A positive integer is fibonatic when it is equal to $F_n^{(a)}$ for a positive integer *a* and n > 3. Prove that there are infinitely many not fibonatic integers.

Problem 3 Let $\mathbb{F}_{13} = \overline{0}, \overline{1}, \dots, \overline{12}$ be the finite field with 13 elements (with sum and product modulus 13). Find how many matrix A of size 5×5 with entries in \mathbb{F}_{13} exist such that

 $A^5 = I$

where I is the identity matrix of order 5

– Day 2

Problem 4 For each of the following, provide proof or a counterexample:

a) Every 2×2 matrix with real entries can we written as the sum of the squares of two 2×2 matrices with real entries.

b) Every 3×3 matrix with real entries can we written as the sum of the squares of two 3×3 matrices with real entries.

Problem 5 Let *N* a positive integer.

In a spaceship there are $2 \cdot N$ people, and each two of them are friends or foes (both relationships are symmetric). Two aliens play a game as follows:

1) The first alien chooses any person as she wishes.

2) Thenceforth, alternately, each alien chooses one person not chosen before such that the person chosen on each turn be a friend of the person chosen on the previous turn.

3) The alien that can't play in her turn loses.

Prove that second player has a winning strategy *if*, and only *if*, the $2 \cdot N$ people can be divided in N pairs in such a way that two people in the same pair are friends.

AoPS Community

Problem 6 Let $f(x) = 2x^2 + x - 1$, $f^0(x) = x$, and $f^{n+1}(x) = f(f^n(x))$ for all real x > 0 and $n \ge 0$ integer (that is, f^n is f iterated n times).

a) Find the number of distinct real roots of the equation $f^3(x) = x$

b) Find, for each $n \ge 0$ integer, the number of distinct real solutions of the equation $f^n(x) = 0$

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.