AoPS Community

www.artofproblemsolving.com/community/c2420267
by jasperE3, mastersail, Johann Peter Dirichlet, justkeeptrying

- Day 1

Problem 1 Let $R>0$, be an integer, and let $n(R)$ be the number um triples $(x, y, z) \in \mathbb{Z}^{3}$ such that $2 x^{2}+3 y^{2}+5 z^{2}=R$. What is the value of
$\lim _{R \rightarrow \infty} \frac{n(1)+n(2)+\cdots+n(R)}{R^{3 / 2}}$?
Problem 2 For a positive integer a, define $F_{1}^{(a)}=1, F_{2}^{(a)}=a$ and for $n>2, F_{n}^{(a)}=F_{n-1}^{(a)}+F_{n-2}^{(a)}$. A positive integer is fibonatic when it is equal to $F_{n}^{(a)}$ for a positive integer a and $n>3$. Prove that there are infintely many not fibonatic integers.

Problem 3 Let $\mathbb{F}_{13}=\overline{0}, \overline{1}, \cdots, \overline{12}$ be the finite field with 13 elements (with sum and product modulus 13). Find how many matrix A of size 5×5 with entries in \mathbb{F}_{13} exist such that

$$
A^{5}=I
$$

where I is the identity matrix of order 5

- Day 2

Problem 4 For each of the following, provide proof or a counterexample:
a) Every 2×2 matrix with real entries can we written as the sum of the squares of two 2×2 matrices with real entries.
b) Every 3×3 matrix with real entries can we written as the sum of the squares of two 3×3 matrices with real entries.

Problem 5 Let N a positive integer.
In a spaceship there are $2 \cdot N$ people, and each two of them are friends or foes (both relationships are symmetric). Two aliens play a game as follows:

1) The first alien chooses any person as she wishes.
2) Thenceforth, alternately, each alien chooses one person not chosen before such that the person chosen on each turn be a friend of the person chosen on the previous turn.

3) The alien that can't play in her turn loses.
Prove that second player has a winning strategy if, and only if, the $2 \cdot N$ people can be divided in N pairs in such a way that two people in the same pair are friends.

Problem 6 Let $f(x)=2 x^{2}+x-1, f^{0}(x)=x$, and $f^{n+1}(x)=f\left(f^{n}(x)\right)$ for all real $x>0$ and $n \geq 0$ integer (that is, f^{n} is f iterated n times).
a) Find the number of distinct real roots of the equation $f^{3}(x)=x$
b) Find, for each $n \geq 0$ integer, the number of distinct real solutions of the equation $f^{n}(x)=0$

