AoPS Community

Czech-Polish-Slovak Match 2021

www.artofproblemsolving.com/community/c2420819
by parmenides51, Rickyminer

- Day 1

1 Find all quadruples (a, b, c, d) of positive integers satisfying $\operatorname{gcd}(a, b, c, d)=1$ and

$$
a|b+c, b| c+d, c|d+a, d| a+b
$$

Vítězslav Kala (Czech Republic)

2 In an acute triangle $A B C$, the incircle ω touches $B C$ at D. Let I_{a} be the excenter of $A B C$ opposite to A, and let M be the midpoint of $D I_{a}$. Prove that the circumcircle of triangle $B M C$ is tangent to ω.

Patrik Bak (Slovakia)

3 For any two convex polygons P_{1} and P_{2} with mutually distinct vertices, denote by $f\left(P_{1}, P_{2}\right)$ the total number of their vertices that lie on a side of the other polygon. For each positive integer $n \geq 4$, determine

$$
\max \left\{f\left(P_{1}, P_{2}\right) \mid P_{1} \text { and } P_{2} \text { are convex } n \text {-gons }\right\} .
$$

(We say that a polygon is convex if all its internal angles are strictly less than 180°.)
Josef Tkadlec (Czech Republic)

- Day 2

4 Determine the number of 2021-tuples of positive integers such that the number 3 is an element of the tuple and consecutive elements of the tuple differ by at most 1.
Walther Janous (Austria)
5 The sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $a_{1}=1$, and for all $n \geq 2$, it holds that

$$
a_{n}=\left\{\begin{array}{l}
a_{n-1}+3 \text { if } n-1 \in\left\{a_{1}, a_{2}, \ldots,, a_{n-1}\right\} \\
a_{n-1}+2 \text { otherwise }
\end{array}\right.
$$

Prove that for all positive integers n, we have

$$
a_{n}<n \cdot(1+\sqrt{2}) .
$$

Dominik Burek (Poland) (also known as Burii (https ://artof problemsolving. com/community/ user/100466))

6 Let $A B C$ be an acute triangle and suppose points $A, A_{b}, B_{a}, B, B_{c}, C_{b}, C, C_{a}$, and A_{c} lie on its perimeter in this order. Let $A_{1} \neq A$ be the second intersection point of the circumcircles of triangles $A A_{b} C_{a}$ and $A A_{c} B_{a}$. Analogously, $B_{1} \neq B$ is the second intersection point of the circumcircles of triangles $B B_{c} A_{b}$ and $B B_{a} C_{b}$, and $C_{1} \neq C$ is the second intersection point of the circumcircles of triangles $C C_{a} B_{c}$ and $C C_{b} A_{c}$. Suppose that the points A_{1}, B_{1}, and C_{1} are all distinct, lie inside the triangle $A B C$, and do not lie on a single line. Prove that lines $A A_{1}, B B_{1}, C C_{1}$, and the circumcircle of triangle $A_{1} B_{1} C_{1}$ all pass through a common point.
Josef Tkadlec (Czech Republic), Patrik Bak (Slovakia)

