

AoPS Community

2021 Czech-Polish-Slovak Match

Czech-Polish-Slovak Match 2021

www.artofproblemsolving.com/community/c2420819 by parmenides51, Rickyminer

-	Day 1
1	Find all quadruples (a, b, c, d) of positive integers satisfying $gcd(a, b, c, d) = 1$ and
	a b+c, b c+d, c d+a, d a+b.
	Vítězslav Kala (Czech Republic)
2	In an acute triangle ABC , the incircle ω touches BC at D . Let I_a be the excenter of ABC opposite to A , and let M be the midpoint of DI_a . Prove that the circumcircle of triangle BMC is tangent to ω .
	Patrik Bak (Slovakia)
3	For any two convex polygons P_1 and P_2 with mutually distinct vertices, denote by $f(P_1, P_2)$ the total number of their vertices that lie on a side of the other polygon. For each positive integer $n \ge 4$, determine
	$\max\{f(P_1, P_2) \mid P_1 \text{ and } P_2 \text{ are convex } n\text{-gons}\}.$
	(We say that a polygon is convex if all its internal angles are strictly less than $180^\circ.)$
	Josef Tkadlec (Czech Republic)
-	Day 2
4	Determine the number of 2021-tuples of positive integers such that the number 3 is an element of the tuple and consecutive elements of the tuple differ by at most 1. <i>Walther Janous (Austria)</i>
5	The sequence a_1, a_2, a_3, \ldots satisfies $a_1 = 1$, and for all $n \ge 2$, it holds that

$$a_n = \begin{cases} a_{n-1} + 3 \text{ if } n-1 \in \{a_1, a_2, \dots, a_{n-1}\}; \\ a_{n-1} + 2 \text{ otherwise.} \end{cases}$$

Prove that for all positive integers n, we have

$$a_n < n \cdot (1 + \sqrt{2}).$$

AoPS Community

Dominik Burek (Poland) (also known as **Burii** (https://artofproblemsolving.com/community/user/100466))

6 Let ABC be an acute triangle and suppose points $A, A_b, B_a, B, B_c, C_b, C, C_a$, and A_c lie on its perimeter in this order. Let $A_1 \neq A$ be the second intersection point of the circumcircles of triangles AA_bC_a and AA_cB_a . Analogously, $B_1 \neq B$ is the second intersection point of the circumcircles of triangles BB_cA_b and BB_aC_b , and $C_1 \neq C$ is the second intersection point of the circumcircles of triangles CC_aB_c and CC_bA_c . Suppose that the points A_1, B_1 , and C_1 are all distinct, lie inside the triangle ABC, and do not lie on a single line. Prove that lines AA_1, BB_1, CC_1 , and the circumcircle of triangle $A_1B_1C_1$ all pass through a common point.

Josef Tkadlec (Czech Republic), Patrik Bak (Slovakia)

AoPS Online (AoPS Academy AoPS & AoPS & Academy

Art of Problem Solving is an ACS WASC Accredited School.