Art of Problem Solving

## IMC 2021

www.artofproblemsolving.com/community/c2421066
by Tintarn, ratatuy, Sumgato

- $\quad$ Day 1 (August 3)
$1 \quad$ Let $A$ be a real $n \times n$ matrix such that $A^{3}=0$
a) prove that there is unique real $n \times n$ matrix $X$ that satisfied the equation $X+A X+X A^{2}=A$
b) Express $X$ in terms of $A$
$2 \quad$ Let $n$ and $k$ be fixed positive integers, and $a$ be arbitrary nonnegative integer .
Choose a random $k$-element subset $X$ of $\{1,2, \ldots, k+a\}$ uniformly (i.e., all k-element subsets are chosen with the same probability) and, independently of $X$, choose random n-elements subset $Y$ of $\{1,2, . ., k+a+n\}$ uniformly.
Prove that the probability $P(\min (Y)>\max (X))$
does not depend on $a$.
3 We say that a positive real number $d$ is good if there exists an infinite squence $a_{1}, a_{2}, a_{3}, \ldots \in(0, d)$ such that for each $n$, the points $a_{1}, a_{2}, \ldots, a_{n}$ partition the interval $[0, d]$ into segments of length at most $\frac{1}{n}$ each. Find $\sup \{d \mid d$ is good $\}$.
$4 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Suppose that for every $\varepsilon>0$, there exists a function $g: \mathbb{R} \rightarrow(0, \infty)$ such that for every pair $(x, y)$ of real numbers, if $|x-y|<\min \{g(x), g(y)\}$, then $|f(x)-f(y)|<\varepsilon$ Prove that $f$ is pointwise limit of a squence of continuous $\mathbb{R} \rightarrow \mathbb{R}$ functions i.e., there is a squence $h_{1}, h_{2}, \ldots$, of continuous $\mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{n \rightarrow \infty} h_{n}(x)=f(x)$ for every $x \in \mathbb{R}$
- $\quad$ Day 2 (August 4)
$5 \quad$ Let $A$ be a real $n \times n$ matrix and suppose that for every positive integer $m$ there exists a real symmetric matrix $B$ such that

$$
2021 B=A^{m}+B^{2} .
$$

Prove that $|\operatorname{det} A| \leq 1$.
6 For a prime number $p$, let $G L_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible $2 \times 2$ matrices of residues modulo $p$, and let $S_{p}$ be the symmetric group (the group of all permutations) on $p$ elements. Show that there is no injective group homomorphism $\phi: G L_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow S_{p}$.
$7 \quad$ Let $D \subseteq \mathbb{C}$ be an open set containing the closed unit disk $\{z:|z| \leq 1\}$. Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function, and let $p(z)$ be a monic polynomial. Prove that

$$
|f(0)| \leq \max _{|z|=1}|f(z) p(z)|
$$

$8 \quad$ Let $n$ be a positive integer. At most how many distinct unit vectors can be selected in $\mathbb{R}^{n}$ such that from any three of them, at least two are orthogonal?

