

AoPS Community

2021 China Girls Math Olympiad

China Girls Math Olympiad 2021

www.artofproblemsolving.com/community/c2426545 by Henry_2001, sqing, FishHeadTail, Plartist

-	Day 1
1	Let $n \in \mathbb{N}^+, x_1, x_2,, x_{n+1}, p, q \in \mathbb{R}^+$, $p < q$ and $x_{n+1}^p > \sum_{i=1}^n x_i^p$. Prove that $(1)x_{n+1}^q > \sum_{i=1}^n x_i^q$; $(2) \left(x_{n+1}^p - \sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} < \left(x_{n+1}^q - \sum_{i=1}^n x_i^q\right)^{\frac{1}{q}}$.
2	In acute triangle ABC ($AB \neq AC$), I is its incenter and J is the A -excenter. X, Y are on minor arcs \widehat{AB} and \widehat{AC} respectively such that $\angle AXI = \angle AYJ = 90^{\circ}$. K is on line BC such that $KI = KJ$. Proof that line AK bisects \overline{XY} .
3	 Find the smallest positive integer n, such that one can color every cell of a n × n grid in red, yellow or blue with all the following conditions satisfied: (1) the number of cells colored in each color is the same; (2) if a row contains a red cell, that row must contain a blue cell and cannot contain a yellow cell; (3) if a column contains a blue cell, it must contain a red cell but cannot contain a yellow cell.
4	Call a sequence of positive integers $(a_n)_{n\geq 1}$ a "CGMO sequence" if $(a_n)_{n\geq 1}$ strictly increases, and for all integers $n \geq 2022$, a_n is the smallest integer such that there exists a non-empty subset of $\{a_1, a_2, \cdots, a_{n-1}\}$ A_n where $a_n \cdot \prod_{a \in A_n} a$ is a perfect square.
	Proof: there exists $c_1, c_2 \in \mathbb{R}^+$ s.t. for any "CGMO sequence" $(a_n)_{n \ge 1}$, there is a positive integer N that satisfies any $n \ge N$, $c_1 \cdot n^2 \le a_n \le c_2 \cdot n^2$.
-	Day 2
5	Proof that if 4 numbers (not necessarily distinct) are picked from $\{1, 2, \dots, 20\}$, one can pick 3 numbers among them and can label these 3 as a, b, c such that $ax \equiv b \pmod{c}$ has integral solutions.
6	Given a finite set S , $P(S)$ denotes the set of all the subsets of S . For any $f : P(S) \to \mathbb{R}$, prove the following inequality: $\sum_{A \in P(S)} \sum_{B \in P(S)} f(A)f(B)2^{ A \cap B } \ge 0.$

AoPS Community

2021 China Girls Math Olympiad

7 In an acute triangle ABC, $AB \neq AC$, O is its circumcenter. K is the reflection of B over AC and L is the reflection of C over AB. X is a point within ABC such that $AX \perp BC$, XK = XL. Points Y, Z are on $\overline{BK}, \overline{CL}$ respectively, satisfying $XY \perp CK, XZ \perp BL$.

Proof that B, C, Y, O, Z lie on a circle.

8 Let m, n be positive integers, define: $f(x) = (x-1)(x^2-1)\cdots(x^m-1)$, $g(x) = (x^{n+1}-1)(x^{n+2}-1)\cdots(x^{n+m}-1)$.

Show that there exists a polynomial h(x) of degree mn such that f(x)h(x) = g(x), and its mn+1 coefficients are all positive integers.

AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.