AoPS Community

China Girls Math Olympiad 2021
www.artofproblemsolving.com/community/c2426545
by Henry_2001, sqing, FishHeadTail, Plartist

- Day 1

1 Let $n \in \mathbb{N}^{+}, x_{1}, x_{2}, \ldots, x_{n+1}, p, q \in \mathbb{R}^{+}, p<q$ and $x_{n+1}^{p}>\sum_{i=1}^{n} x_{i}^{p}$. Prove that (1) $x_{n+1}^{q}>\sum_{i=1}^{n} x_{i}^{q}$;
(2) $\left(x_{n+1}^{p}-\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}<\left(x_{n+1}^{q}-\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}}$.

2 In acute triangle $A B C(A B \neq A C), I$ is its incenter and J is the A-excenter. X, Y are on minor arcs $\widehat{A B}$ and $\widehat{A C}$ respectively such that $\angle A X I=\angle A Y J=90^{\circ} . K$ is on line $B C$ such that $K I=K J$.
Proof that line $A K$ bisects $\overline{X Y}$.
3 Find the smallest positive integer n, such that one can color every cell of a $n \times n$ grid in red, yellow or blue with all the following conditions satisfied:
(1) the number of cells colored in each color is the same;
(2) if a row contains a red cell, that row must contain a blue cell and cannot contain a yellow cell;
(3) if a column contains a blue cell, it must contain a red cell but cannot contain a yellow cell.

4 Call a sequence of positive integers $\left(a_{n}\right)_{n \geq 1}$ a "CGMO sequence" if $\left(a_{n}\right)_{n \geq 1}$ strictly increases, and for all integers $n \geq 2022, a_{n}$ is the smallest integer such that there exists a non-empty subset of $\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\} A_{n}$ where $a_{n} \cdot \prod_{a \in A_{n}} a$ is a perfect square.
Proof: there exists $c_{1}, c_{2} \in \mathbb{R}^{+}$s.t. for any "CGMO sequence" $\left(a_{n}\right)_{n \geq 1}$, there is a positive integer N that satisfies any $n \geq N, c_{1} \cdot n^{2} \leq a_{n} \leq c_{2} \cdot n^{2}$.

- Day 2

5 Proof that if 4 numbers (not necessarily distinct) are picked from $\{1,2, \cdots, 20\}$, one can pick 3 numbers among them and can label these 3 as a, b, c such that $a x \equiv b(\bmod c)$ has integral solutions.

6 Given a finite set $S, P(S)$ denotes the set of all the subsets of S. For any $f: P(S) \rightarrow \mathbb{R}$, prove the following inequality:

$$
\sum_{A \in P(S)} \sum_{B \in P(S)} f(A) f(B) 2^{|A \cap B|} \geq 0
$$

7 In an acute triangle $A B C, A B \neq A C, O$ is its circumcenter. K is the reflection of B over $A C$ and L is the reflection of C over $A B$. X is a point within $A B C$ such that $A X \perp B C, X K=X L$. Points Y, Z are on $\overline{B K}, \overline{C L}$ respectively, satisfying $X Y \perp C K, X Z \perp B L$.

Proof that B, C, Y, O, Z lie on a circle.
8 Let m, n be positive integers, define: $f(x)=(x-1)\left(x^{2}-1\right) \cdots\left(x^{m}-1\right), g(x)=\left(x^{n+1}-1\right)\left(x^{n+2}-\right.$ 1) $\cdots\left(x^{n+m}-1\right)$.

Show that there exists a polynomial $h(x)$ of degree $m n$ such that $f(x) h(x)=g(x)$, and its $m n+1$ coefficients are all positive integers.

