AoPS Community

Malaysia National Olympiad 2019

www.artofproblemsolving.com/community/c2445624
by parmenides51, hopeless404

- \quad Sulong

1 Evaluate the following sum

$$
\frac{1}{\log _{2} \frac{1}{7}}+\frac{1}{\log _{3} \frac{1}{7}}+\frac{1}{\log _{4} \frac{1}{7}}+\frac{1}{\log _{5} \frac{1}{7}}+\frac{1}{\log _{6} \frac{1}{7}}-\frac{1}{\log _{7} \frac{1}{7}}-\frac{1}{\log _{8} \frac{1}{7}}-\frac{1}{\log _{9} \frac{1}{7}}-\frac{1}{\log _{10} \frac{1}{7}}
$$

3 A factorian is defined to be a number such that it is equal to the sum of it's digits' factorials. What is the smallest three digit factorian?

4 Let $A=\{1,2, \ldots, 100\}$ and $f(k), k \in N$ be the size of the largest subset of A such that no two elements differ by k. How many solutions are there to $f(k)=50$?

5 In a triangle $A B C$, point D lies on $A B$. It is given that $A D=25, B D=24, B C=28, C D=$ $20 . A C=$?

6 It is known that $2018\left(2019^{39}+2019^{37}+\ldots+2019\right)+1$ is prime. How many positive factors does $2019^{41}+1$ have?

B1 Given three nonzero real numbers a, b, c, such that $a>b>c$, prove the equation has at least one real root.

$$
\frac{1}{x+a}+\frac{1}{x+b}+\frac{1}{x+c}-\frac{3}{x}=0
$$

@below sorry, I believe I fixed it with the added constraint.
B2 Given a parallelogram $A B C D$, a point M is chosen such that $\angle D A C=\angle M A C$ and $\angle C A B=$ $\angle M A B$.
Prove $\frac{A M}{B M}=\left(\frac{A C}{B D}\right)^{2}$
B3 An arithmetic sequence of five terms is considered good if it contains 19 and 20. For example, $18.5,19.0,19.5,20.0,20.5$ is a good sequence.
For every good sequence, the sum of its terms is totalled. What is the total sum of all good sequences?

