AoPS Community

XI Iberoamerican Interuniversitary Mathematics Competition - Colombia

www.artofproblemsolving.com/community/c2445782
by Ozc

Problem 1 Determine all triples of integers (x, y, z) that satisfy the equation

$$
x^{z}+y^{z}=z .
$$

Problem 2 Consider the set

$$
\{0,1\}^{n}=\left\{X=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in\{0,1\}, 1 \leq i \leq n\right\} .
$$

We say that $X>Y$ if $X \neq Y$ and the following n inequalities are satisfy

$$
x_{1} \geq y_{1}, x_{1}+x_{2} \geq y_{1}+y_{2}, \ldots, x_{1}+x_{2}+\cdots+x_{n} \geq y_{1}+y_{2}+\cdots+y_{n} .
$$

We define a chain of length k as a subset $Z_{1}, \ldots, Z_{k} \subseteq\{0,1\}^{n}$ of distinct elements such that $Z_{1}>Z_{2}>\cdots>Z_{k}$.
Determine the lenght of longest chain in $\{0,1\}^{n}$.
Problem 3 Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ a sequence of non zero real numbers.
For $m \geq 1$, we define:

$$
X_{m}=\left\{X \subseteq\{0,1, \ldots, m-1\}:\left|\sum_{x \in X} a_{x}\right|>\frac{1}{m}\right\} .
$$

Show that

$$
\lim _{n \rightarrow \infty} \frac{\left|X_{n}\right|}{2^{n}}=1
$$

Problem 4 Let $(G, *)$ a group of $n>1$ elements, and let $g \in G$ be an element distinct from the identity. Ana and Bob play with the group G on the following way:
Starting with Ana and playing alternately, each player selects an element of G that has not been selected before, until each element of G have been selected or a player have selected the elements a and $a * g$ for some $a \in G$.
In that case it is said that the player loses and his opponent wins.
a) If n is odd, show that, independent of element g, one of the two players has a winning strategy and determines which player
possesses such a strategy.
b) If n is even, show that there exists an element $g \in G$ for which none of the players has a winning strategy.

Note: A group $(G, *)$ es a set G together with a binary operation $*: G \times G \rightarrow G$ that satisfy the following properties $(i) *$ is asociative: $\forall a, b, c \in G(a * b) * c=a *(b * c)$; (ii) there exists an identity element $e \in G$ such that $\forall a \in G, a * e=e * a=a$; (iii) there exists inverse elements: $\forall a \in G \exists a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$.

Problem 5 Let $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ a set of m integers. Show that there exists a matrix $m \times m$ with integers entries A such that each of the matrices $A+k_{j} I, 1 \leq j \leq m$ are invertible and their entries have integer entries (here I denotes the identity matrix).

Problem 6 Determine all the injective functions $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$, such that for each pair of integers (m, n) the following conditions hold:
a) $f(m n)=f(m) f(n) b) f\left(m^{2}+n^{2}\right) \mid f\left(m^{2}\right)+f\left(n^{2}\right)$.

