

AoPS Community

2019 CIIM

XI Iberoamerican Interuniversitary Mathematics Competition - Colombia www.artofproblemsolving.com/community/c2445782 by Ozc

Problem 1 Determine all triples of integers (x, y, z) that satisfy the equation

$$x^z + y^z = z.$$

Problem 2 Consider the set

 $\{0,1\}^n = \{X = (x_1, x_2, \dots, x_n) : x_i \in \{0,1\}, 1 \le i \le n\}.$

We say that X > Y if $X \neq Y$ and the following *n* inequalities are satisfy

 $x_1 \ge y_1, x_1 + x_2 \ge y_1 + y_2, \dots, x_1 + x_2 + \dots + x_n \ge y_1 + y_2 + \dots + y_n.$

We define a chain of length k as a subset $Z_1, \ldots, Z_k \subseteq \{0, 1\}^n$ of distinct elements such that $Z_1 > Z_2 > \cdots > Z_k$. Determine the length of longest chain in $\{0, 1\}^n$.

Problem 3 Let $\{a_n\}_{n \in \mathbb{N}}$ a sequence of non zero real numbers.

For $m \ge 1$, we define:

$$X_m = \left\{ X \subseteq \{0, 1, \dots, m-1\} : \left| \sum_{x \in X} a_x \right| > \frac{1}{m} \right\}$$

Show that

$$\lim_{n \to \infty} \frac{|X_n|}{2^n} = 1$$

Problem 4 Let (G, *) a group of n > 1 elements, and let $g \in G$ be an element distinct from the identity. Ana and Bob play with the group G on the following way:

Starting with Ana and playing alternately, each player selects an element of G that has not been selected before, until each element of G have been selected or a player have selected the elements a and a * g for some $a \in G$.

In that case it is said that the player loses and his opponent wins.

a) If *n* is odd, show that, independent of element *g*, one of the two players has a winning strategy and determines which player possesses such a strategy.

AoPS Community

2019 CIIM

b) If n is even, show that there exists an element $g \in G$ for which none of the players has a winning strategy.

Note: A group (G, *) es a set G together with a binary operation $*: G \times G \to G$ that satisfy the following properties (i) * is asociative: $\forall a, b, c \in G(a * b) * c = a * (b * c)$; (ii) there exists an identity element $e \in G$ such that $\forall a \in G, a * e = e * a = a$; (iii) there exists inverse elements: $\forall a \in G \exists a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$.

Problem 5 Let $\{k_1, k_2, ..., k_m\}$ a set of m integers. Show that there exists a matrix $m \times m$ with integers entries A such that each of the matrices $A + k_j I$, $1 \le j \le m$ are invertible and their entries have integer entries (here I denotes the identity matrix).

Problem 6 Determine all the injective functions $f : \mathbb{Z}_+ \to \mathbb{Z}_+$, such that for each pair of integers (m, n) the following conditions hold:

a) $f(mn) = f(m)f(n) b) f(m^2 + n^2) | f(m^2) + f(n^2).$

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.