Art of Problem Solving

AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2021

www.artofproblemsolving.com/community/c2457704
by parmenides51

- Day I

1 Do there exist two polynomials P and Q with integer coefficient such that i) both P and Q have a coefficient with absolute value bigger than 2021, ii) all coefficients of $P \cdot Q$ by absolute value are at most 1 .

2 Let $A B C$ be an acute, non-isosceles triangle with H the orthocenter and M the midpoint of $A H$. Denote O_{1}, O_{2} as the centers of circles pass through H and respectively tangent to $B C$ at B, C. Let X, Y be the ex-centers which respect to angle H in triangles $H M O_{1}, H M O_{2}$. Prove that $X Y$ is parallel to $O_{1} O_{2}$.

3 Let x, y and z be odd positive integers such that $\operatorname{gcd}(x, y, z)=1$ and the sum $x^{2}+y^{2}+z^{2}$ is divisible by $x+y+z$. Prove that $x+y+z-2$ is not divisible by 3 .

4 In the popular game of Minesweeper, some fields of an $a \times b$ board are marked with a mine and on all the remaining fields the number of adjacent fields that contain a mine is recorded. Two fields are considered adjacent if they share a common vertex. For which $k \in\{0,1,2,3,4,5,6,7,8\}$ is it possible for some a and $b, a b>2021$, to create a board whose fields are covered in mines, except for 2021 fields who are all marked with k ?

- Day II

1 There are $n \geq 2$ positive integers written on the whiteboard. A move consists of three steps: calculate the least common multiple N of all numbers then choose any number a and replace a by N / a.
Prove that, using a finite number of moves, you can always make all the numbers on the whiteboard equal to 1 .

2 Let $A B C$ be an acute triangle with $A B<A C$ and inscribed in the circle (O). Denote I as the incenter of $A B C$ and D, E as the intersections of $A I$ with $B C,(O)$ respectively. Take a point K on $B C$ such that $\angle A I K=90^{\circ}$ and $K A, K E$ meet (O) again at M, N respectively. The rays $N D$, $N I$ meet the circle (O) at Q, P.

1. Prove that the quadrilateral $M P Q E$ is a kite.
2. Take J on $I O$ such that $A K \perp A J$. The line through I and perpendicular to $O I$ cuts $B C$ at R ,cuts $E K$ at S.Prove that $O R \| J S$.

3 Let a, b, and c be positive real numbers. Prove that

$$
\left(a^{5}-a^{2}+3\right)\left(b^{5}-b^{2}+3\right)\left(c^{5}-c^{2}+3\right) \geq(a+b+c)^{3}
$$

4 A set of n points in space is given, no three of which are collinear and no four of which are coplanar (on a single plane), and each pair of points is connected by a line segment. Initially, all the line segments are colorless. A positive integer b is given and Alice and Bob play the following game. In each turn Alice colors one segment red and then Bob colors up to b segments blue. This is repeated until there are no more colorless segments left. If Alice colors a red triangle, Alice wins. If there are no more colorless segments and Alice hasn't succeeded in coloring a red triangle, Bob wins. Neither player is allowed to color over an already colored line segment. 1. Prove that if $b<\sqrt{2 n-2}-\frac{3}{2}$, then Alice has a winning strategy.
2. Prove that if $b \geq 2 \sqrt{n}$, then Bob has a winning strategy.

