Art of Problem Solving

AoPS Community

Middle European Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c2459522
by Tintarn, mathematics2004

- Individual Competition

1 Determine all real numbers A such that every sequence of non-zero real numbers x_{1}, x_{2}, \ldots satisfying

$$
x_{n+1}=A-\frac{1}{x_{n}}
$$

for every integer $n \geq 1$, has only finitely many negative terms.
2 Let m and n be positive integers. Some squares of an $m \times n$ board are coloured red. A sequence $a_{1}, a_{2}, \ldots, a_{2 r}$ of $2 r \geq 4$ pairwise distinct red squares is called a bishop circuit if for every $k \in$ $\{1, \ldots, 2 r\}$, the squares a_{k} and a_{k+1} lie on a diagonal, but the squares a_{k} and a_{k+2} do not lie on a diagonal (here $a_{2 r+1}=a_{1}$ and $a_{2 r+2}=a_{2}$).
In terms of m and n, determine the maximum possible number of red squares on an $m \times n$ board without a bishop circuit.
(Remark. Two squares lie on a diagonal if the line passing through their centres intersects the sides of the board at an angle of 45°.)
$3 \quad$ Let $A B C$ be an acute triangle and D an interior point of segment $B C$. Points E and F lie in the half-plane determined by the line $B C$ containing A such that $D E$ is perpendicular to $B E$ and $D E$ is tangent to the circumcircle of $A C D$, while $D F$ is perpendicular to $C F$ and $D F$ is tangent to the circumcircle of $A B D$. Prove that the points A, D, E and F are concyclic.
$4 \quad$ Let $n \geq 3$ be an integer. Zagi the squirrel sits at a vertex of a regular n-gon. Zagi plans to make a journey of $n-1$ jumps such that in the i-th jump, it jumps by i edges clockwise, for $i \in\{1, \ldots, n-1\}$. Prove that if after $\left\lceil\frac{n}{2}\right\rceil$ jumps Zagi has visited $\left\lceil\frac{n}{2}\right\rceil+1$ distinct vertices, then after $n-1$ jumps Zagi will have visited all of the vertices.
(Remark. For a real number x, we denote by $\lceil x\rceil$ the smallest integer larger or equal to x.)

- Team Competition

1 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the inequality

$$
f\left(x^{2}\right)-f\left(y^{2}\right) \leq(f(x)+y)(x-f(y))
$$

holds for all real numbers x and y.
2 Given a positive integer n, we say that a polynomial P with real coefficients is n-pretty if the equation $P(\lfloor x\rfloor)=\lfloor P(x)\rfloor$ has exactly n real solutions. Show that for each positive integer n

- there exists an n-pretty polynomial;
- any n-pretty polynomial has a degree of at least $\frac{2 n+1}{3}$.
(Remark. For a real number x, we denote by $\lfloor x\rfloor$ the largest integer smaller than or equal to x.)
3 Let n, b and c be positive integers. A group of n pirates wants to fairly split their treasure. The treasure consists of $c \cdot n$ identical coins distributed over $b \cdot n$ bags, of which at least $n-1$ bags are initially empty. Captain Jack inspects the contents of each bag and then performs a sequence of moves. In one move, he can take any number of coins from a single bag and put them into one empty bag. Prove that no matter how the coins are initially distributed, Jack can perform at most $n-1$ moves and then split the bags among the pirates such that each pirate gets b bags and c coins.

4 Let n be a positive integer. Prove that in a regular $6 n$-gon, we can draw $3 n$ diagonals with pairwise distinct ends and partition the drawn diagonals into n triplets so that:

- the diagonals in each triplet intersect in one interior point of the polygon and - all these n intersection points are distinct.

5 Let $A D$ be the diameter of the circumcircle of an acute triangle $A B C$. The lines through D parallel to $A B$ and $A C$ meet lines $A C$ and $A B$ in points E and F, respectively. Lines $E F$ and $B C$ meet at G. Prove that $A D$ and $D G$ are perpendicular.

6 Let $A B C$ be a triangle and let M be the midpoint of the segment $B C$. Let X be a point on the ray $A B$ such that $2 \angle C X A=\angle C M A$. Let Y be a point on the ray $A C$ such that $2 \angle A Y B=\angle A M B$. The line $B C$ intersects the circumcircle of the triangle $A X Y$ at P and Q, such that the points P, B, C, and Q lie in this order on the line $B C$. Prove that $P B=Q C$.

Proposed by Dominik Burek, Poland
$7 \quad$ Find all pairs (n, p) of positive integers such that p is prime and

$$
1+2+\cdots+n=3 \cdot\left(1^{2}+2^{2}+\cdot+p^{2}\right)
$$

8 Prove that there are infinitely many positive integers n such that n^{2} written in base 4 contains only digits 1 and 2 .

