

AoPS Community

2006 Paraguay Mathematical Olympiad

Paraguay Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c2461188 by Mualpha7

1	What are the last two digits of the decimal representation of 21^{2006} ?
2	Consider all right triangles with integer sides such that the length of the hypotenuse and one of the two sides are consecutive. How many such triangles exist?
3	Let Γ_A , Γ_B , Γ_C be circles such that Γ_A is tangent to Γ_B and Γ_B is tangent to Γ_C . All three circles are tangent to lines L and M , with A , B , C being the tangency points of M with Γ_A , Γ_B , Γ_C , respectively. Given that $12 = r_A < r_B < r_C = 75$, calculate:
	a) the length of r_B . b) the distance between point A and the point of intersection of lines L and M .
4	Consider all pairs of positive integers (a, b) , with $a < b$, such that $\sqrt{a} + \sqrt{b} = \sqrt{2,160}$ Determine all possible values of a .
5	Let <i>ABC</i> be a triangle, and let <i>P</i> be a point on side <i>BC</i> such that $\frac{BP}{PC} = \frac{1}{2}$. If $\angle ABC = 45^{\circ}$ and $\angle APC = 60^{\circ}$, determine $\angle ACB$ without trigonometry.

