## AoPS Community

## Paraguay Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c2461188
by Mualpha7

1 What are the last two digits of the decimal representation of $21^{2006}$ ?
2 Consider all right triangles with integer sides such that the length of the hypotenuse and one of the two sides are consecutive. How many such triangles exist?
$3 \quad$ Let $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}$ be circles such that $\Gamma_{A}$ is tangent to $\Gamma_{B}$ and $\Gamma_{B}$ is tangent to $\Gamma_{C}$. All three circles are tangent to lines $L$ and $M$, with $A, B, C$ being the tangency points of $M$ with $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}$, respectively. Given that $12=r_{A}<r_{B}<r_{C}=75$, calculate:
a) the length of $r_{B}$.
b) the distance between point $A$ and the point of intersection of lines $L$ and $M$.

4 Consider all pairs of positive integers $(a, b)$, with $a<b$, such that
$\sqrt{a}+\sqrt{b}=\sqrt{2,160}$
Determine all possible values of $a$.
$5 \quad$ Let $A B C$ be a triangle, and let $P$ be a point on side $B C$ such that $\frac{B P}{P C}=\frac{1}{2}$. If $\measuredangle A B C=45^{\circ}$ and $\measuredangle A P C=60^{\circ}$, determine $\measuredangle A C B$ without trigonometry.

