AoPS Community

Mediterranean Mathematics Olympiad 2021

www.artofproblemsolving.com/community/c2464680
by parmenides51

1 Determine the smallest positive integer M with the following property:
For every choice of integers a, b, c, there exists a polynomial $P(x)$ with integer coefficients so that $P(1)=a M$ and $P(2)=b M$ and $P(4)=c M$.

Proposed by Gerhard Woeginger, Austria
2 For every sequence $p_{1}<p_{2}<\cdots<p_{8}$ of eight prime numbers, determine the largest integer N for which the following equation has no solution in positive integers x_{1}, \ldots, x_{8} :

$$
p_{1} p_{2} \cdots p_{8}\left(\frac{x_{1}}{p_{1}}+\frac{x_{2}}{p_{2}}+\cdots+\frac{x_{8}}{p_{8}}\right)=N
$$

Proposed by Gerhard Woeginger, Austria
3 Let $A B C$ be an equiangular triangle with circumcircle ω. Let point $F \in A B$ and point $E \in A C$ so that $\angle A B E+\angle A C F=60^{\circ}$. The circumcircle of triangle $A F E$ intersects the circle ω in the point D. The halflines $D E$ and $D F$ intersect the line through B and C in the points X and Y. Prove that the incenter of the triangle $D X Y$ is independent of the choice of E and F.
(The angles in the problem statement are not directed. It is assumed that E and F are chosen in such a way that the halflines $D E$ and $D F$ indeed intersect the line through B and C.)

4 Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ ve non-negative real numbers, so that $x_{1} \leq 4$ and $x_{1}+x_{2} \leq 13$ and $x_{1}+x_{2}+$ $x_{3} \leq 29$ and $x_{1}+x_{2}+x_{3}+x_{4} \leq 54$ and $x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 90$.
Prove that $\sqrt{x_{1}}+\sqrt{x_{2}}+\sqrt{x_{3}}+\sqrt{x_{4}}+\sqrt{x_{5}} \leq 20$.

