AoPS Community

Final Round - Costa Rica 2019

www.artofproblemsolving.com/community/c2478248
by parmenides51

- Day 1

1 In a faraway place in the Universe, a villain has a medal with special powers and wants to hide it so that no one else can use it. For this, the villain hides it in a vertex of a regular polygon with 2019 sides. Olcoman, the savior of the Olcomita people, wants to get the medal to restore peace in the Universe, for which you have to pay 1000 olcolones for each time he makes the following move: on each turn he chooses a vertex of the polygon, which turns green if the medal is on it or in one of the four vertices closest to it, or otherwise red. Find the fewest olcolones Olcoman needs to determine with certainty the position of the medal.

2 Consider the parallelogram $A B C D$, with $\angle A B C=60$ and sides $A B=\sqrt{3}, B C=1$. Let ω be the circle of center B and radius $B A$, and let τ be the circle of center D and radius $D A$. Determine the area of the region between the circumferences ω and τ, within the parallelogram $A B C D$ (the area of the shaded region).
https://cdn.artofproblemsolving.com/attachments/5/a/02b17ec644289d95b6fce78cb5f1ecb3d3ba! png

3 Let x, y be two positive integers, with $x>y$, such that $2 n=x+y$, where n is a number two-digit integer. If $\sqrt{x y}$ is an integer with the digits of n but in reverse order, determine the value of $x-y$

- Day 2
$4 \quad$ Let $g: R \rightarrow R$ be a linear function such that $g(1)=0$. If $f: R \rightarrow R$ is a quadratic function such what $g\left(x^{2}\right)=f(x)$ and $f(x+1)-f(x-1)=x$ for all $x \in R$. Determine the value of $f(2019)$.

5 We have an a sequence such that $a_{n}=2 \cdot 10^{n+1}+19$. Determine all the primes p, with $p \leq 19$, for which there exists some $n \geq 1$ such that p divides a_{n}.

6 Consider the right isosceles $\triangle A B C$ at A. Let L be the intersection of the bisector of $\angle A C B$ with $A B$ and K the intersection point of $C L$ with the bisector of $B C$. Let X be the point on line $A K$ such that $\angle K C X=90^{\circ}$ and let Y be the point of intersection of $C X$ with the circumcircle of $\triangle A B C$. Let Y^{\prime} the reflection of point Y wrt $B C$. Prove that $B-K-Y^{\prime}$.

Notation: $A-B-C$ means than points A, B, C are collinear in that order i.e. B lies between A and C.

- shortlist

A2 Let $x, y, z \in R$, find all triples (x, y, z) that satisfy the following system of equations:
$2 x^{2}-3 x y+2 y^{2}=1 y^{2}-3 y z+4 z^{2}=2 z^{2}+3 z x-x^{2}=3$
G2 Let H be the orthocenter and O the circumcenter of the acute triangle $\triangle A B C$. The circle with center H and radius $H A$ intersects the lines $A C$ and $A B$ at points P and Q, respectively. Let point O be the orthocenter of triangle $\triangle A P Q$, determine the measure of $\angle B A C$.

LR2 A website offers for 1000 colones, the possibility of playing 4 shifts a certain game of randomly, in each turn the user will have the same probability p of winning the game and obtaining 1000 colones (per shift). But to calculate p he asks you to roll 3 dice and add the results, with what p will be the probability of obtaining this sum. Olcoman visits the website, and upon rolling the dice, he realizes that the probability of losing his money is from $\left(\frac{103}{108}\right)^{4}$.
a) Determine the probability p that Olcoman wins a game and the possible outcomes with the dice, to get to this one.
b) Which sums (with the dice) give the maximum probability of having a profit of exactly 1000 colones? Calculate this probability and the value of p for this case.

LR3 Consider the following sequence of squares (side 1), in each step the central square is divided into equal parts and colored as shown in the figure:
https://cdn.artofproblemsolving.com/attachments/9/0/6874ab5aecadf2112fbe4a196ab3091ab8b31 png
Square 1 Square 2 Square 3
Let A_{n} with $n \in N, n>1$ be the shaded area of square n, show that $A_{n}<\frac{2}{3}$

