

AoPS Community

China Second Round Olympiad 2021

www.artofproblemsolving.com/community/c2480909

by Scrutiny, luosw

1 Let $k \ge 2$ be an integer and a_1, a_2, \dots, a_k be k non-zero reals. Prove that there are finitely many pairs of pairwise distinct positive integers (n_1, n_2, \dots, n_k) such that

 $a_1 \cdot n_1! + a_2 \cdot n_2! + \dots + a_k \cdot n_k! = 0.$

- 2 In $\triangle ABC$, point *M* is the middle point of *AC*. *MD*//*AB* and meet the tangent of *A* to \odot (*ABC*) at point *D*. Point *E* is in *AD* and point *A* is the middle point of *DE*. {*P*} = \odot (*ABE*) \cap *AC*, {*Q*} = \odot (*ADP*) \cap *DM*. Prove that $\angle QCB = \angle BAC$. https://z3.ax1x.com/2021/09/12/4pZ7Zj.jpg(https://imgtu.com/i/4pZ7Zj)
- **3** If $n \ge 4$, $n \in \mathbb{N}^*$, $n \mid (2^n 2)$. Prove that $\frac{2^n 2}{n}$ is not a prime number.
- **4** Find the minimum value of c such that for any positive integer $n \ge 4$ and any set $A \subseteq \{1, 2, \dots, n\}$, if |A| > cn, there exists a function $f : A \to \{1, -1\}$ satisfying

$$\left|\sum_{a\in A} a \cdot f(a)\right| \le 1.$$

AoPS Online 🔇 AoPS Academy 🐼 AoPS 🗱