AoPS Community

China Second Round Olympiad 2021
www.artofproblemsolving.com/community/c2480909
by Scrutiny, luosw

1 Let $k \geq 2$ be an integer and $a_{1}, a_{2}, \cdots, a_{k}$ be k non-zero reals. Prove that there are finitely many pairs of pairwise distinct positive integers $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ such that

$$
a_{1} \cdot n_{1}!+a_{2} \cdot n_{2}!+\cdots+a_{k} \cdot n_{k}!=0
$$

2 In $\triangle A B C$, point M is the middle point of $A C . M D / / A B$ and meet the tangent of A to $\odot(A B C)$ at point D. Point E is in $A D$ and point A is the middle point of $D E .\{P\}=\odot(A B E) \cap A C,\{Q\}=$ $\odot(A D P) \cap D M$. Prove that $\angle Q C B=\angle B A C$.
https://z3.ax1x.com/2021/09/12/4pZ7Zj.jpg (https://imgtu.com/i/4pZ7Zj)
3 If $n \geq 4, n \in \mathbb{N}^{*}, n \mid\left(2^{n}-2\right)$. Prove that $\frac{2^{n}-2}{n}$ is not a prime number.
4 Find the minimum value of c such that for any positive integer $n \geq 4$ and any set $A \subseteq\{1,2, \cdots, n\}$, if $|A|>c n$, there exists a function $f: A \rightarrow\{1,-1\}$ satisfying

$$
\left|\sum_{a \in A} a \cdot f(a)\right| \leq 1 .
$$

