AoPS Community

Final Round - Costa Rica 2015

www.artofproblemsolving.com/community/c2482369
by parmenides51

- Level III
- \quad Day 1

1 Let $\triangle A B C$ be such that $\angle B A C$ is acute. The line perpendicular on side $A B$ from C and the line perpendicular on $A C$ from B intersect the circumscribed circle of $\triangle A B C$ at D and E respectively. If $D E=B C$, calculate $\angle B A C$.

2 In a video game, there is a board divided into squares, with 27 rows and 27 columns.
The squares are painted alternately in black, gray and white as follows: • in the first row, the first square is black, the next is gray, the next is white, the next is black, and so on; • in the second row, the first is white, the next is black, the next is gray, the next is white, and so on; \bullet in the third row, the order would be gray-white-black-gray and so on; • the fourth row is painted the same as the first, the fifth the same as the second, \bullet the sixth the same as the third, and so on. In the box in row i and column j, there are $i j$ coins.
For example, in the box in row 15 and column 20 there are (15)(20) = 300 coins.
Verify that in total there are, in the black squares, $9^{2}\left(13^{2}+14^{2}+15^{2}\right)$ coins.
3 Indicate (justifying your answer) if there exists a function $f: R \rightarrow R$ such that for all $x \in R$ fulfills that
i) $\{f(x))\} \sin ^{2} x+\{x\} \cos (f(x)) \cos x=f(x)$
ii) $f(f(x))=f(x)$
where $\{m\}$ denotes the fractional part of m. That is, $\{2.657\}=0.657$, and $\{-1.75\}=0.25$.

- Day 2

4 Find all triples (p, M, z) of integers, where p is prime, m is positive and z is negative, that satisfy the equation

$$
p^{3}+p m+2 z m=m^{2}+p z+z^{2}
$$

5 Let $a, b \in R^{+}$with $a b=1$, prove that

$$
\frac{1}{a^{3}+3 b}+\frac{1}{b^{3}+3 a} \leq \frac{1}{2} .
$$

AoPS Community

6 Given the trapezoid $A B C D$ with the $B C \| A D$, let C_{1} and C_{2} be circles with diameters $A B$ and $C D$ respectively. Let M and N be the intersection points of C_{1} with $A C$ and $B D$ respectively. Let K and L be the intersection points of C_{2} with $A C$ and $B D$ respectively. Given $M \neq A, N \neq B$, $K \neq C, L \neq D$. Prove that $N K \| M L$.

- \quad Shortlist

A2 Determine, if they exist, the real values of x and y that satisfy that

$$
\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+\frac{x}{y}+\frac{y}{x}=0
$$

such that $x+y<0$.
A3 Knowing that b is a real constant such that $b \geq 1$, determine the sum of the real solutions of the equation

$$
x=\sqrt{b-\sqrt{b+x}}
$$

F1 A function f defined on integers such that
$f(n)=n+3$ if n is odd $f(n)=\frac{n}{2}$ if n is even
If k is an odd integer, determine the values for which $f(f(f(k)))=k$.
F2 Find all functions $f: R \rightarrow R$ such that $f(f(x) f(y))=x y$ and there is no $k \in R-\{0,1,-1\}$ such that $f(k)=k$.

G1 Points A, B, C are vertices of an equilateral triangle inscribed in a circle. Point D lies on the shorter arc AB. Prove that $A D+B D=D C$.

G3 Let $\triangle A_{1} B_{1} C_{1}$ and l_{1}, m_{1}, n_{1} be the trisectors closest to $A_{1} B_{1}, B_{1} C_{1}, C_{1} A_{1}$ of the angles A_{1}, B_{1}, C_{1} respectively. Let $A_{2}=l_{1} \cap n_{1}, B_{2}=m_{1} \cap l_{1}, C_{2}=n_{1} \cap m_{1}$. So on we create triangles $\triangle A_{n} B_{n} C_{n}$. If $\triangle A_{1} B_{1} C_{1}$ is equilateral prove that exists $n \in N$, such that all the sides of $\triangle A_{n} B_{n} C_{n}$ are parallel to the sides of $\triangle A_{1} B_{1} C_{1}$.

G4 Consider $\triangle A B C$, right at B, let I be its incenter and F, D, E the points where the circle inscribed on sides $\mathrm{AB}, B C$ and $A C$, respectively. If M is the intersection point of $C I$ and $E F$, and N is the intersection point of $D M$ and $A B$. Prove that $A N=I D$.

G5 Let A, B, C, D be points that lie on the same circle. Let F be such that the arc $A F$ is congruent with the arc $B F$. Let P be the intersection point of the segments $D F$ and $A C$. Let Q be intersection point of the $C F$ and $B D$ segments. Prove that $P Q \| A B$.

AoPS Community

2015 Costa Rica - Final Round

LR2 In the rectangle in the figure, we are going to write 12 numbers from 1 to 9 , so that the sum of the four numbers written in each line is the same and the sum of the three is also equal numbers in each column. Six numbers have already been written. Determine the sum of the numbers of each row and every column.
https://cdn.artofproblemsolving.com/attachments/7/f/3db9ded1e703c5392f258e1608a1800760d78 png

LR3 Ana \& Bruno decide to play a game with the following rules.:
a) Ana has cards $1,3,5,7, \ldots, 2 n-1$
b) Bruno has cards $2,4,6,8, \ldots, 2 n$

During the first turn and all odd turns afterwards, Bruno chooses one of his cards first and reveals it to Ana, and Ana chooses one of her cards second. Whoever's card is higher gains a point. During the second turn and all even turns afterwards, Ana chooses one of her cards first and reveals it to Bruno, and Bruno chooses one of his cards second. Similarly, whoever's card is higher gains a point. During each turn, neither player can use a card they have already used on a previous turn. The game ends when all cards have been used after n turns. Determine the highest number of points Ana can earn, and how she manages to do this.

LR4 Let $P=\{(a, b) / a, b \in\{1,2, \ldots, n\}, n \in N\}$ be a set of point of the Cartesian plane and draw horizontal, vertical, or diagonal segments, of length 1 or $\sqrt{2}$, so that both ends of the segment are in P and do not intersect each other. Furthermore, for each point (a, b) it is true that i) if $a+b$ is a multiple of 3 , then it is an endpoint of exactly 3 segments.
ii) if $a+b$ is an even not multiple of 3 , then it is an endpoint of exactly 2 segments.
iii) if $a+b$ is an odd not multiple of 3 , then it is endpoint of exactly 1 segment.
a) Check that with $n=6$ it is possible to satisfy all the conditions.
b) Show that with $n=2015$ it is not possible to satisfy all the conditions.

N1 Find all the values of $n \in N$ such that $n^{2}=2^{n}$.
N3 Find all the pairs $a, b \in N$ such that $a b-1 \mid a^{2}+1$.
N4 Show that there are no triples (a, b, c) of positive integers such that
a) $a+c, b+c, a+b$ do not have common multiples in pairs.
b) $\frac{c^{2}}{a+b}, \frac{b^{2}}{a+c}, \frac{a^{2}}{c+b}$ are integer numbers.

```
- \(\quad \mathrm{C} 2\)
```

- Day 1

1 Let $A B C D$ be a quadrilateral whose diagonals are perpendicular, and let S be the intersection of those diagonals. Let K, L, M and N be the reflections of S on the sides $A B, B C, C D$ and $D A$ respectively. $B N$ cuts the circumcircle of $\triangle S K N$ at E and $B M$ cuts the circumcircle of $\triangle S L M$ at F. Prove that the quadrilateral $E F L K$ is cyclic.

2 A positive natural number n is said to be comico if its prime factorization is $n=p_{1} p_{2} \ldots p_{k}$, with $k \geq 3$, and also the primes p_{1}, \ldots, p_{k} they fulfill that $p_{1}+p_{2}=c_{1}^{2} p_{1}+p_{2}+p_{3}=c_{2}^{2} \ldots$ $p_{1}+p_{2}+\ldots+p_{n}=c_{n-1}^{2}$ where $c_{1}, c_{2}, \ldots, c_{n-1}$ are positive integers where c_{1} is not divisible by 7 .
Find all comico numbers less than 10,000 .
3 In a set X of n people, some know each other and others do not, where the relationship to know is symmetric; that is, if A knows B. then B knows A. On the other hand, given any 4 people: A, B, C and D : if A knows B, B knows C and C knows D, then it happens at least one of the following three: A knows C, B knows D or A knows D. Prove that X can be partition into two sets Y and Z so that all elements of Y know all those of Z or no element in Y knows any in Z.

- Day 2

4 Find all triples of integers (x, y, z) not zero and relative primes in pairs such that $\frac{(y+z-x)^{2}}{4 x}$, $\frac{(z+x-y)^{2}}{4 y}$ and $\frac{(x+y-z)^{2}}{4 z}$ are all integers.

5 Let $f: N^{+} \rightarrow N^{+}$be a function that satisfies that

$$
k f(n) \leq f(k n) \leq k f(n)+k-1, \forall k, n \in N^{+}
$$

Prove that

$$
f(a)+f(b) \leq f(a+b) \leq f(a)+f(b)+1, \forall a, b \in N^{+}
$$

6 Let $\triangle A B C$ be a triangle with circumcenter O. Let P and Q be internal points on the sides $A B$ and $A C$ respectively such that $\angle P O B=\angle A B C$ and $\angle Q O C=\angle A C B$. Show that the reflection of line $B C$ over line $P Q$ is tangent to the circumcircle of triangle $\triangle A P Q$.

