Art of Problem Solving

AoPS Community

National Math Olympiad (3rd Round) 2021

www.artofproblemsolving.com/community/c2485123
by matinyousefi, Hopeooooo, amuthup

- Geometry

1 An acute triangle $A B C$ is given. Let D be the foot of altitude dropped for A. Tangents from D to circles with diameters $A B$ and $A C$ intersects with the said circles at K and L, in respective. Point S in the plane is given so that $\angle A B C+\angle A B S=\angle A C B+\angle A C S=180^{\circ}$. Prove that A, K, L and S lie on a circle.

2 Given an acute triangle $A B C$ let M be the midpoint of $A B$. Point K is given on the other side of line $A C$ from that of point B such that $\angle K M C=90^{\circ}$ and $\angle K A C=180^{\circ}-\angle A B C$. The tangent to circumcircle of triangle $A B C$ at A intersects line $C K$ at E. Prove that the reflection of line $B C$ with respect to $C M$ passes through the midpoint of line segment $M E$.

3 Given triangle $A B C$ variable points X and Y are chosen on segments $A B$ and $A C$, respectively. Point Z on line $B C$ is chosen such that $Z X=Z Y$. The circumcircle of $X Y Z$ cuts the line $B C$ for the second time at T. Point P is given on line $X Y$ such that $\angle P T Z=90^{\circ}$. Point Q is on the same side of line $X Y$ with A furthermore $\angle Q X Y=\angle A C P$ and $\angle Q Y X=\angle A B P$. Prove that the circumcircle of triangle $Q X Y$ passes through a fixed point (as X and Y vary).

- Combinatorics

1 Let S be an infinite set of positive integers, such that there exist four pairwise distinct $a, b, c, d \in$ S with $\operatorname{gcd}(a, b) \neq \operatorname{gcd}(c, d)$. Prove that there exist three pairwise distinct $x, y, z \in S$ such that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, z) \neq \operatorname{gcd}(z, x)$.

2 Is it possible to arrange a permutation of Integers on the integer lattice infinite from both sides such that each row is increasing from left to right and each column increasing from up to bottom?

3 Let $n \geq 3$ be a fixed integer. There are $m \geq n+1$ beads on a circular necklace. You wish to paint the beads using n colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of m for which this task is not possible.

Carl Schildkraut, USA

- Algebra

1 Positive real numbers a, b, c and d are given such that $a+b+c+d=4$ prove that

$$
\frac{a b}{a^{2}-\frac{4}{3} a+\frac{4}{3}}+\frac{b c}{b^{2}-\frac{4}{3} b+\frac{4}{3}}+\frac{c d}{c^{2}-\frac{4}{3} c+\frac{4}{3}}+\frac{d a}{d^{2}-\frac{4}{3} d+\frac{4}{3}} \leq 4
$$

2 If a, b, c and d are complex non-zero numbers such that

$$
2|a-b| \leq|b|, 2|b-c| \leq|c|, 2|c-d| \leq|d|, 2|d-a| \leq|a| .
$$

Prove that

$$
\frac{7}{2}<\left|\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}\right| .
$$

3 Polynomial P with non-negative real coefficients and function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are given such that for all $x, y \in \mathbb{R}^{+}$we have

$$
f(x+P(x) f(y))=(y+1) f(x)
$$

(a) Prove that P has degree at most 1.
(b) Find all function f and non-constant polynomials P satisfying the equality.

- Number Theory

1 For a natural number $n, f(n)$ is defined as the number of positive integers less than n which are neither coprime to n nor a divisor of it. Prove that for each positive integer k there exist only finitely many n satisfying $f(n)=k$.

2 Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any two positive integers a and b we have

$$
f^{a}(b)+f^{b}(a) \mid 2\left(f(a b)+b^{2}-1\right)
$$

Where $f^{n}(m)$ is defined in the standard iterative manner.
$3 \quad x_{1}$ is a natural constant. Prove that there does not exist any natural number $m>2500$ such that the recursive sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ defined by $x_{n+1}=x_{n}^{s(n)}+1$ becomes eventually periodic modulo m. (That is there does not exist natural numbers N and T such that for each $n \geq N$, $\left.m \mid x_{n}-x_{n+T}\right)$.
($s(n)$ is the sum of digits of n.)

- Final Exam

1 Is it possible to arrange natural numbers 1 to 8 on vertices of a cube such that each number divides sum of the three numbers sharing an edge with it?

2 Given an acute triangle $A B C$, let $A D$ be an altitude and H the orthocenter. Let E denote the reflection of H with respect to A. Point X is chosen on the circumcircle of triangle $B D E$ such that $A C \| D X$ and point Y is chosen on the circumcircle of triangle $C D E$ such that $D Y \| A B$. Prove that the circumcircle of triangle $A X Y$ is tangent to that of $A B C$.

3 Find all functions $f: \mathbb{Q}[x] \rightarrow \mathbb{R}$ such that:
(a) for all $P, Q \in \mathbb{Q}[x], f(P \circ Q)=f(Q \circ P)$;
(b) for all $P, Q \in \mathbb{Q}[x]$ with $P Q \neq 0, f(P \cdot Q)=f(P)+f(Q)$.
($P \circ Q$ indicates $P(Q(x))$.)
4 Arash and Babak play the following game, taking turns alternatively, on a 1400×1401 table. Arash starts and in his turns he colors k, L-corners (any three cell of a square). Babak in his turn colors one 2×2 square. Neither player is allowed to recolor any cell. Find all positive integers k for which Arash has a winning strategy.

