AoPS Community

2011 Stanford Mathematics Tournament

Stanford Mathematics Tournament 2011

www.artofproblemsolving.com/community/c2485520
by parmenides51

- \quad Team Round
- \quad The 15 problems p1-15 come from Stanford Math Tournament. Rice Math Tournament had 13 same problems and p16, p17 as substitutes of problems p5 and p11.
p1. Let $A B C D$ be a unit square. The point E lies on $B C$ and F lies on $A D . \triangle A E F$ is equilateral. $G H I J$ is a square inscribed in $\triangle A E F$ so that $\overline{G H}$ is on $\overline{E F}$. Compute the area of $G H I J$. https://cdn.artofproblemsolving.com/attachments/e/1/e7c02a8c2bee27558a441e4acc9b639f084c png
p2. Find all integers x for which $\left|x^{3}+6 x^{2}+2 x-6\right|$ is prime.
p3. Let A be the set of points (a, b) with $2<a<6,-2<b<2$ such that the equation

$$
a x^{4}+2 x^{3}-2(2 b-a) x^{2}+2 x+a=0
$$

has at least one real root. Determine the area of A.
p4. Three nonnegative reals x, y, z satisfy $x+y+z=12$ and $x y+y z+z x=21$. Find the maximum of $x y z$.
p5. Let $\triangle A B C$ be equilateral. Two points D and E are on side $B C$ (with order B, D, E, C), and satisfy $\angle D A E=30^{\circ}$. If $B D=2$ and $C E=3$, what is $B C$?
https://cdn.artofproblemsolving.com/attachments/a/6/4dd9249411e35efaa220b184e2dc3428493b png
p6. Three numbers are chosen at random between 0 and 2 . What is the probability that the difference between the greatest and least is less than $1 / 4$?
p7. Tony the mouse starts in the top left corner of a 3×3 grid. After each second, he randomly moves to an adjacent square with equal probability. What is the probability he reaches the cheese in the bottom right corner before he reaches the mousetrap in the center?
p8. Let $A=(0,0), B=(1,0)$, and $C=(0,1)$. Divide $A B$ into n equal segments, and call the

AoPS Community

2011 Stanford Mathematics Tournament

endpoints of these segments $A=B_{0}, B_{1}, B_{2}, \ldots, B_{n}=B$. Similarly, divide $A C$ into n equal segments with endpoints $A=C_{0}, C_{1}, C_{2}, \ldots, C_{n}=C$. By connecting B_{i} and C_{n-i} for all $0 \leq i \leq n$, one gets a piecewise curve consisting of the uppermost line segments. Find the equation of the limit of this piecewise curve as n goes to infinity.
https://cdn.artofproblemsolving.com/attachments/7/d/903a6dc58d6f49be75c7aa8fecfdc863c2a74 png
p9. Determine the maximum number of distinct regions into which 2011 circles of arbitrary size can partition the plane.
p10. For positive reals x, y, and z, compute the maximum possible value of $\frac{x y z(x+y+z)}{(x+y)^{2}(y+z)^{2}}$.
p11. Find the diameter of an icosahedron with side length 1 (an icosahedron is a regular polyhedron with 20 identical equilateral triangle faces, a picture is given below).
https://cdn.artofproblemsolving.com/attachments/2/d/e5714078e9da58557cde03ae5c9364487766s png
p12. Find the boundary of the projection of the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ onto the plane $z=0$ with respect to the point $P=(0,-1,2)$. Express your answer in the form $f(x, y)=0$, where $f(x, y)$ is a function of x and y.
p13. Compute the number of pairs of 2011-tuples $\left(x_{1}, x_{2}, \ldots, x_{2011}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{2011}\right)$ such that $x_{k}=x_{k-1}^{2}-y_{k-1}^{2}-2$ and $y_{k}=2 x_{k-1} y_{k-1}$ for $1 \leq k \leq 2010, x_{1}=x_{2011}^{2}-y_{2011}^{2}-2$, and $y_{1}=2 x_{2011} y_{2011}$.
p14. Compute $I=\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$.
p15. Find the smallest $\alpha>0$ such that there exists $m>0$ making the following equation hold for all positive integers $a, b \geq 2$:

$$
\left(\frac{1}{\operatorname{gcd}(a, b-1)}+\frac{1}{\operatorname{gcd}(a-1, b)}\right)(a+b)^{\alpha} \geq m
$$

Rice Math Tournament problems (substitutes of problems p5, and p11).
p16. If $f(x)=(x-1)^{4}(x-2)^{3}(x-3)^{2}$, find $f^{\prime \prime \prime}(1)+f^{\prime \prime}(2)+f^{\prime}(3)$.
p17. Find the unique polynomial $P(x)$ with coefficients taken from the set $\{-1,0,1\}$ and with least possible degree such that $P(2010) \equiv 1(\bmod 3), P(2011) \equiv 0(\bmod 3)$, and $P(2012) \equiv 0$ $(\bmod 3)$.

PS. You had better use hide for answers.

