AoPS Community

Austria Beginners' Competition 2011

www.artofproblemsolving.com/community/c2494468
by parmenides51

1 Let x be the smallest positive integer for which $2 x$ is the square of an integer, $3 x$ is the third power of an integer, and $5 x$ is the fifth power of an integer. Find the prime factorization of x.
(St. Wagner, Stellenbosch University)
2 Let p and q be real numbers. The quadratic equation

$$
x^{2}+p x+q=0
$$

has the real solutions x_{1} and x_{2}. In addition, the following two conditions apply:
(i) The numbers x_{1} and x_{2} differ from each other by exactly 1.
(ii) The numbers p and q differ from each other by exactly 1 .

Show that then p, q, x_{1} and x_{2} are integers.
(G. Kirchner, University of Innsbruck)
$3 \quad$ Let x, y be positive real numbers with $x+y+x y=3$. Prove that

$$
x+y \geq 2 .
$$

When does equality holds?
(K. Czakler, GRG 21, Vienna)

4 Let $A B C$ be an isosceles triangle with $A C=B C$. On the arc $C A$ of its circumcircle, which does not contain B, there is a point P. The projection of C on the line $A P$ is denoted by E, the projection of C on the line $B P$ is denoted by F. Prove that the lines $A E$ and $B F$ have equal lengths.
(W. Janous, WRG Ursulincn, Innsbruck)

