www.artofproblemsolving.com/community/c2499895
by jasperE3, jbaca, JuanDelPan

- Day 1

Problem 1 There are $n \geq 2$ coins numbered from 1 to n. These coins are placed around a circle, not necessarily in order.

In each turn, if we are on the coin numbered i, we will jump to the one i places from it, always in a clockwise order, beginning with coin number 1. For an example, see the figure below.

Find all values of n for which there exists an arrangement of the coins in which every coin will be visited.
https://services.artofproblemsolving.com/download.php?id=YXROYWNobWVudHMvOC9jL2EOZDRhNDVr
$=\backslash \& r n=U 2 N y Z W V u I F N o b 3 Q g M j A y M S 0 x M C 0 w N i B h d C A x N y 4 x M y 4 x N S 5 w b m c=$
Problem 2 Consider the isosceles right triangle $A B C$ with $\angle B A C=90^{\circ}$. Let ℓ be the line passing through B and the midpoint of side $A C$. Let Γ be the circumference with diameter $A B$. The line ℓ and the circumference Γ meet at point P, different from B. Show that the circumference passing through A, C and P is tangent to line $B C$ at C.

Problem 3 Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ so that the equality

$$
f(x+y f(x+y))+x f(x)=f(x f(x+y+1))+y^{2}
$$

is true for any real numbers x, y.

- Day 2

Problem 4 Lucía multiplies some positive one-digit numbers (not necessarily distinct) and obtains a number n greater than 10. Then, she multiplies all the digits of n and obtains an odd number. Find all possible values of the units digit of n.
Proposed by Pablo Serrano, Ecuador
Problem 5 Celeste has an unlimited amount of each type of n types of candy, numerated type 1, type $2, \ldots$ type n . Initially she takes $m>0$ candy pieces and places them in a row on a table. Then, she chooses one of the following operations (if available) and executes it:

1. She eats a candy of type k, and in its position in the row she places one candy type $k-1$ followed by one candy type $k+1$ (we consider type $n+1$ to be type 1 , and type 0 to be type n).
2. She chooses two consecutive candies which are the same type, and eats them.

Find all positive integers n for which Celeste can leave the table empty for any value of m and any configuration of candies on the table.

Proposed by Federico Bach and Santiago Rodriguez, Colombia
Problem 6 Let $A B C$ be a triangle with incenter I, and A-excenter Γ. Let A_{1}, B_{1}, C_{1} be the points of tangency of Γ with $B C, A C$ and $A B$, respectively. Suppose $I A_{1}, I B_{1}$ and $I C_{1}$ intersect Γ for the second time at points A_{2}, B_{2}, C_{2}, respectively. M is the midpoint of segment $A A_{1}$. If the intersection of $A_{1} B_{1}$ and $A_{2} B_{2}$ is X, and the intersection of $A_{1} C_{1}$ and $A_{2} C_{2}$ is Y, prove that $M X=M Y$.

