

AoPS Community

2021 Pan-American Girls' Mathematical Olympiad

www.artofproblemsolving.com/community/c2499895 by jasperE3, jbaca, JuanDelPan

- Day 1

Problem 1 There are $n \ge 2$ coins numbered from 1 to n. These coins are placed around a circle, not necessarily in order.

In each turn, if we are on the coin numbered *i*, we will jump to the one *i* places from it, always in a clockwise order, beginning with coin number 1. For an example, see the figure below.

Find all values of n for which there exists an arrangement of the coins in which every coin will be visited.

https://services.artofproblemsolving.com/download.php?id=YXROYWNobWVudHMvOC9jL2E0ZDRhNDV} =\&rn=U2NyZWVuIFNob3QgMjAyMS0xMC0wNiBhdCAxNy4xMy4xNS5wbmc=

Problem 2 Consider the isosceles right triangle ABC with $\angle BAC = 90^{\circ}$. Let ℓ be the line passing through B and the midpoint of side AC. Let Γ be the circumference with diameter AB. The line ℓ and the circumference Γ meet at point P, different from B. Show that the circumference passing through A, C and P is tangent to line BC at C.

Problem 3 Let \mathbb{R} be the set of real numbers. Determine all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ so that the equality

$$f(x + yf(x + y)) + xf(x) = f(xf(x + y + 1)) + y^{2}$$

is true for any real numbers x, y.

- Day 2

Problem 4 Lucía multiplies some positive one-digit numbers (not necessarily distinct) and obtains a number n greater than 10. Then, she multiplies all the digits of n and obtains an odd number. Find all possible values of the units digit of n.

Proposed by Pablo Serrano, Ecuador

Problem 5 Celeste has an unlimited amount of each type of n types of candy, numerated type 1, type 2, ... type n. Initially she takes m > 0 candy pieces and places them in a row on a table. Then, she chooses one of the following operations (if available) and executes it:

1. She eats a candy of type k, and in its position in the row she places one candy type k - 1 followed by one candy type k + 1 (we consider type n + 1 to be type 1, and type 0 to be type n).

2. She chooses two consecutive candies which are the same type, and eats them.

AoPS Community

Find all positive integers n for which Celeste can leave the table empty for any value of m and any configuration of candies on the table.

Proposed by Federico Bach and Santiago Rodriguez, Colombia

Problem 6 Let ABC be a triangle with incenter I, and A-excenter Γ . Let A_1, B_1, C_1 be the points of tangency of Γ with BC, AC and AB, respectively. Suppose IA_1, IB_1 and IC_1 intersect Γ for the second time at points A_2, B_2, C_2 , respectively. M is the midpoint of segment AA_1 . If the intersection of A_1B_1 and A_2B_2 is X, and the intersection of A_1C_1 and A_2C_2 is Y, prove that MX = MY.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.