AoPS Community

Kurschak Competition 2021

www.artofproblemsolving.com/community/c2504236
by MathHorse

1 Let $P_{0}=\left(a_{0}, b_{0}\right), P_{1}=\left(a_{1}, b_{1}\right), P_{2}=\left(a_{2}, b_{2}\right)$ be points on the plane such that $P_{0} P_{1} P_{2} \Delta$ contains the origin O. Show that the areas of triangles $P_{0} O P_{1}, P_{0} O P_{2}, P_{1} O P_{2}$ form a geometric sequence in that order if and only if there exists a real number x, such that

$$
a_{0} x^{2}+a_{1} x+a_{2}=b_{0} x^{2}+b_{1} x+b_{2}=0
$$

2 In neverland, there are n cities and n airlines. Each airline serves an odd number of cities in a circular way, that is, if it serves cities $c_{1}, c_{2}, \ldots, c_{2 k+1}$, then they fly planes connecting $c_{1} c_{2}, c_{2} c_{3}, \ldots, c_{1} c_{2 k+1}$. Show that we can select an odd number of cities $d_{1}, d_{2}, \ldots, d_{2 m+1}$ such that we can fly $d_{1} \rightarrow$ $d_{2} \rightarrow \cdots \rightarrow d_{2 m+1} \rightarrow d_{1}$ while using each airline at most once.

3 Let $A_{1} B_{3} A_{2} B_{1} A_{3} B_{2}$ be a cyclic hexagon such that $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$ intersect at one point. Let $C_{1}=A_{1} B_{1} \cap A_{2} A_{3}, C_{2}=A_{2} B_{2} \cap A_{1} A_{3}, C_{3}=A_{3} B_{3} \cap A_{1} A_{2}$. Let D_{1} be the point on the circumcircle of the hexagon such that $C_{1} B_{1} D_{1}$ touches $A_{2} A_{3}$. Define D_{2}, D_{3} analogously. Show that $A_{1} D_{1}, A_{2} D_{2}, A_{3} D_{3}$ meet at one point.

