AoPS Community

Belarusian National Olympiad 2015

www.artofproblemsolving.com/community/c252409
by proximo

- Day 1
- \quad Line intersects hyperbola H_{1}, given by the equation $y=1 / x$ at points A and B, and hyperbola H_{2}, given by the equation $y=-1 / x$ at points C and D. Tangents to hyperbola H_{1} at points A and B intersect at point M, and tangents to hyperbola H_{2} at points C and D intersect at point N. Prove that points M and N are symmetric about the origin.
- A natural number n was alternately divided by 29, 41 and 59. The result was three nonzero remainders, the sum of which equals n. Find all such n
- Let A_{1} be a midmoint of $B C$, and G is a centroid of the non-isosceles triangle $\triangle A B C . G B K L$ and $G C M N$ are the squares lying on the left with respect to rays $G B$ and $G C$ respectively. Let A_{2} be a midpoint of a segment connecting the centers of the squares $G B K L$ and $G C M N$. Circumcircle of triangle $\triangle A_{1} A_{2} G$ intersects $B C$ at points A_{1} and X. Find $\frac{A_{1} X}{X H}$, where H is a base of altitude $A H$ of the triangle $\triangle A B C$.
- \quad Find all functions $f(x)$ determined on interval $[0,1]$, satisfying following conditions

$$
\begin{gathered}
\{f(x)\} \sin ^{2} x+\{x\} \cos f(x) \cos x=f(x) \\
f(f(x))=f(x)
\end{gathered}
$$

Here $\{y\}$ means a fractional part of number y

- Day 2

- \quad Find all real $x \geq-1$ such that for all $a_{1}, \ldots, a_{n} \geq 1$, where $n \geq 2$ the following inequality holds

$$
\frac{a_{1}+x}{2} * \frac{a_{2}+x}{2} * \ldots * \frac{a_{n}+x}{2} \leq \frac{a_{1} a_{2} \ldots a_{n}+x}{2}
$$

- Let M be a set of natural numbers from 1 to 2015 which are not perfect squares.
a) Prove that for any $n \in M\{\sqrt{n}\} \geq 0.011$
b) Prove that there exists number $n \in M$ such that $\{\sqrt{n}\}<0.0115$

Here $\{y\}$ means the fractional part of number y

- Let I be an incenter of a triangle $\triangle A B C$. Points A_{1}, B_{1}, C_{1} are the tangent points of the inscribed circle on sides $B C, C A$ and $A B$ respectively. Circumcircle of $\triangle B C_{1} B_{1}$ intersects line $B C$ at points B and K and Circumcircle of $\triangle C B_{1} C_{1}$ intersects line $B C$ at points C and L. Prove that lines $L C_{1}, K B_{1}$ and $I A_{1}$ are concurrent.
- Let n be a natural number. What is the least number $m(m>n)$ such that the set of all natural numbers forn n to m (inclusively) can be divided into subsets such that in each subset one of the numbers equals the sum of other numbers in this subset?

