Art of Problem Solving

AoPS Community

Belarusian National Olympiad 2012

www.artofproblemsolving.com/community/c252430
by proximo

- Day 1
- Let $A B$ and $C D$ be two parallel chordes on hyperbola $y=1 / x$. Lines $A C$ and $B D$ intersect axis $O y$ at points A_{1} and D_{1} respectively, and axis $O x$ - at points C_{1} and B_{1} respectively. Prove that the area of $\triangle A_{1} O C_{1}$ equals the area of $\triangle D_{1} O B_{1}$
- For positive real nubers a, b, c find the maximum real number x, such that there exist positive numbers p, q, r, such that $p+q+r=1$ and x does not exceed numbers $a \frac{p}{q}, b \frac{q}{r}, c \frac{r}{p}$
- \quad Find all pairs (f, h) of functions $f, h: \mathbb{R} \rightarrow \mathbb{R}$ such as for all real x and y the equation holds.

$$
f\left(x^{2}+y h(x)\right)=x h(x)+f(x y)
$$

- \quad Inside the circle w of radius 1 there are n line segments with total length $2 \sqrt{n}$. Prove that there exists a circle such that its center coincides with a center of w and it intersects at least two of line segments.
- Day 2
- \quad Find all pairs $(n ; p)$ of natural numbers n and prime numbers p, satisfying the equation

$$
p(p-1)=2\left(n^{3}+1\right)
$$

- \quad Let point I be an incenter of $\triangle A B C$. Ray $A I$ intersects circumcircle of $\triangle A B C$ at point D. Circumcircle of $\triangle C D I$ intersects ray $B I$ at ponts I and K. Prove that $B K=C K$.
- a) In isosceles trapezoid from six line segments (four sides and two diagonals) three are colored red and three are colored green. Prove that from one of the triples of line segmets of the same colour it is possible to make a triangle.
b) Will the previous statement remain for arbitary trapezoid?
- $\quad 2 n$ girls and $2 n$ boys danced on the school ball. It's known, that for any pair of girls the amount of boys danced with only one of them equals n.
Prove that the previous statement is also true for boys.

