Art of Problem Solving

AoPS Community

Belarusian National Olympiad 2011

www.artofproblemsolving.com/community/c252501
by proximo

- Day 1
- \quad Real nonzero numbers $a, b, c(b>0)$ satisfy the condition that two distinct roots of the equation $a x^{2}+b x-c=0$ are also roots of the equation $x^{3}+b x^{2}+a x-c=0$. Prove the inequalities:
a) $a b c>16$
b) $a b c \geq \frac{3125}{108}$
- \quad Find $\left\{\frac{2009!}{2011}\right\}$ where $\{x\}$ is a fractional part of number x
- Let M be a midpoint of the side $A B$ of the oxygon $\triangle A B C$, points P and Q are bases of altitudes $A P$ and $B Q$ of this triangle. It is known that circumcircle of $\triangle B M P$ tangents side $A C$. Prove that circumcircle of $\triangle A M Q$ tangents line $B C$.
- What is the least number N of 4-digits numbers compiled from digits $1,2,3,4,5,6,7,8$ you need to choose, that for any two different digits, both of this digits are in
a) At least in one of chosen N numbers?
b)At least in one, but not more than in two of chosen N numbers?
- Day 2
- Let B and C be the points on hyperbola $y=1 / x(x>0)$ and abscissa of point C is greater than abscissa of point B. Line $O A$ (O is an origin) intersects hyperbola $y=1 / x(x<0)$ at point A. Prove that the angle $B A C$ equals one frome the angles between line $B C$ and tangent to hyperbola at point B
- \quad Prove that there exist infinitely many natural numbers n, such that n and the sum of its digits $S(n)$ are perfect squares and there are no digits 0 in n
- Signs " + " or " - " are in each cell of table $n * n$. In one turn it is allowed to reverse all signs in one column or in one row. At the beginning there were two signs " - ", and in other cells $"+"$. After some turns a table with nine signs " - ", and in other cells $-"+"$ was obtained. Find the maximum and the minimum values of n.
- Let I be an incenter of non-isosceles oxygon $\triangle A B C$ and Q is a tangent point lying on $A B$. Point T belongs to side $A B$ and $I T \| C Q$. Line $T K$ tangents inscribed circle at the point K (different from the point Q and intersects lines $C A$ and $C B$ at points L and N respectively. Prove that T is a midpoint of $L N$.

