2021 Iberoamerican

AoPS Community

www.artofproblemsolving.com/community/c2525986

by jasperE3, jbaca, blackbluecar

– Day 1	
---------	--

- **1** Let $P = \{p_1, p_2, \dots, p_{10}\}$ be a set of 10 different prime numbers and let A be the set of all the integers greater than 1 so that their prime decomposition only contains primes of P. The elements of A are colored in such a way that:
 - each element of P has a different color,
 - if $m, n \in A$, then mn is the same color of m or n,

- for any pair of different colors \mathcal{R} and \mathcal{S} , there are no $j, k, m, n \in A$ (not necessarily distinct from one another), with j, k colored \mathcal{R} and m, n colored \mathcal{S} , so that j is a divisor of m and n is a divisor of k, simultaneously.

Prove that there exists a prime of *P* so that all its multiples in *A* are the same color.

- **2** Consider an acute-angled triangle ABC, with AC > AB, and let Γ be its circumcircle. Let E and F be the midpoints of the sides AC and AB, respectively. The circumcircle of the triangle CEF and Γ meet at X and C, with $X \neq C$. The line BX and the tangent to Γ through A meet at Y. Let P be the point on segment AB so that YP = YA, with $P \neq A$, and let Q be the point where AB and the parallel to BC through Y meet each other. Show that F is the midpoint of PQ.
- **3** Let a_1, a_2, a_3, \ldots be a sequence of positive integers and let b_1, b_2, b_3, \ldots be the sequence of real numbers given by

$$b_n = \frac{a_1 a_2 \cdots a_n}{a_1 + a_2 + \cdots + a_n}, \text{ for } n \ge 1$$

Show that, if there exists at least one term among every million consecutive terms of the sequence b_1, b_2, b_3, \ldots that is an integer, then there exists some k such that $b_k > 2021^{2021}$.

- Day 2
- 4 Let a, b, c, x, y, z be real numbers such that

 $a^{2} + x^{2} = b^{2} + y^{2} = c^{2} + z^{2} = (a + b)^{2} + (x + y)^{2} = (b + c)^{2} + (y + z)^{2} = (c + a)^{2} + (z + x)^{2}$

Show that $a^2 + b^2 + c^2 = x^2 + y^2 + z^2$.

AoPS Community

- **5** For a finite set *C* of integer numbers, we define S(C) as the sum of the elements of *C*. Find two non-empty sets *A* and *B* whose intersection is empty, whose union is the set $\{1, 2, ..., 2021\}$ and such that the product S(A)S(B) is a perfect square.
- **6** Consider a *n*-sided regular polygon, $n \ge 4$, and let *V* be a subset of *r* vertices of the polygon. Show that if $r(r-3) \ge n$, then there exist at least two congruent triangles whose vertices belong to *V*.

AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.