www.artofproblemsolving.com/community/c2525986
by jasperE3, jbaca, blackbluecar

- Day 1

1 Let $P=\left\{p_{1}, p_{2}, \ldots, p_{10}\right\}$ be a set of 10 different prime numbers and let A be the set of all the integers greater than 1 so that their prime decomposition only contains primes of P. The elements of A are colored in such a way that:

- each element of P has a different color,
- if $m, n \in A$, then $m n$ is the same color of m or n,
- for any pair of different colors \mathcal{R} and \mathcal{S}, there are no $j, k, m, n \in A$ (not necessarily distinct from one another), with j, k colored \mathcal{R} and m, n colored \mathcal{S}, so that j is a divisor of m and n is a divisor of k, simultaneously.

Prove that there exists a prime of P so that all its multiples in A are the same color.
2 Consider an acute-angled triangle $A B C$, with $A C>A B$, and let Γ be its circumcircle. Let E and F be the midpoints of the sides $A C$ and $A B$, respectively. The circumcircle of the triangle $C E F$ and Γ meet at X and C, with $X \neq C$. The line $B X$ and the tangent to Γ through A meet at Y. Let P be the point on segment $A B$ so that $Y P=Y A$, with $P \neq A$, and let Q be the point where $A B$ and the parallel to $B C$ through Y meet each other. Show that F is the midpoint of $P Q$.

3 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive integers and let $b_{1}, b_{2}, b_{3}, \ldots$ be the sequence of real numbers given by

$$
b_{n}=\frac{a_{1} a_{2} \cdots a_{n}}{a_{1}+a_{2}+\cdots+a_{n}}, \text { for } n \geq 1
$$

Show that, if there exists at least one term among every million consecutive terms of the sequence $b_{1}, b_{2}, b_{3}, \ldots$ that is an integer, then there exists some k such that $b_{k}>2021^{2021}$.

- Day 2

4 Let a, b, c, x, y, z be real numbers such that

$$
a^{2}+x^{2}=b^{2}+y^{2}=c^{2}+z^{2}=(a+b)^{2}+(x+y)^{2}=(b+c)^{2}+(y+z)^{2}=(c+a)^{2}+(z+x)^{2}
$$

Show that $a^{2}+b^{2}+c^{2}=x^{2}+y^{2}+z^{2}$.
$5 \quad$ For a finite set C of integer numbers, we define $S(C)$ as the sum of the elements of C. Find two non-empty sets A and B whose intersection is empty, whose union is the set $\{1,2, \ldots, 2021\}$ and such that the product $S(A) S(B)$ is a perfect square.
$6 \quad$ Consider a n-sided regular polygon, $n \geq 4$, and let V be a subset of r vertices of the polygon. Show that if $r(r-3) \geq n$, then there exist at least two congruent triangles whose vertices belong to V.

