Art of Problem Solving

AoPS Community

Belarusian National Olympiad 2010

www.artofproblemsolving.com/community/c252814
by proximo

- Day 1
- Let M be the point of intersection of the diagonals $A C$ and $B D$ of trapezoid $A B C D(B C \| A D)$, $A D>B C$. Circle w_{1} passes through the point M and tangents $A D$ at the point A. Circle w_{2} passes through the point M and tangents $A D$ at the point D. Point S is the point of intersection of lines $A B$ and $D C$. Line $A S$ intersects w_{1} at the point X. Line $D S$ intersects w_{2} at the point $Y . O$ is a center of a circumcircle of $\triangle A S D$. Prove that $S O \perp X Y$
- Let r be a fixed positive real number. It is known that for some positive integer n the following statement is true: for any positive real numbers a_{1}, \ldots, a_{n} satisfying the equation $a_{1}+\ldots+a_{n}=$ $r\left(\frac{1}{a_{1}}+\ldots+\frac{1}{a_{n}}\right)$ they also satisfy the equation $\frac{1}{\sqrt{r}-a_{1}}+\ldots+\frac{1}{\sqrt{r}-a_{n}}=\frac{1}{\sqrt{r}}\left(a_{i} \neq \sqrt{r}\right)$. Find n.
- \quad Nick and Mike are playing the following game. They have a heap and 330 stones in it. They take turns. In one turn it is allowed to take from the heap exactly 1 , exactly n or exactly m stones. The boy who takes the last stone wins. Before the beginning Nick says the number n, ($1<n<10$). After that Mike says the number m, $m \neq n, 1<m<10$). Nick goes first. Is it possible for one of the boys to say the number to provide the victory to himself, regardless of his opponents number and strategy?
- \quad There are 15 points on the plane, coloured blue, red and green. It is known that the sum of all pairwise distances between red and blue points equals 51 , between red and green points equals 39 , between blue and green points equals 1 . What are the possible amounts of red, blue and green points?
- Day 2
- Let $\sigma(n)$ denote the sum and $\tau(n)$ denote the amount of natural divisors of number n (including 1 and n). Find the greatest real number a such that for all $n>1$ the following inequality is true:

$$
\frac{\sigma(n)}{\tau(n)} \geq a \sqrt{n}
$$

- \quad Let O_{1} and O_{2} be the centers of circles w_{1}, w_{2} respectively. Circle w_{1} intersects circle w_{2} at points C and D. Line $O_{1} O_{2}$ intersects circle w_{2} at the point A. Line $D A$ intersects circle w_{1} at the point S. Line $O_{1} O_{2}$ intersects line $S C$ at the point F. E is an intersection point of circle w_{1} and circumcircle w_{3} of $\triangle A D F$. Prove that line $O_{1} E$ tangents circle w_{3}
- \quad Natural number $m \geq 2$ is given. There are $n, n \geq 3$ non-collinear points, pairwise connected by segments. Every segment is coloured one of the m given colours (there are segments of each colour) so that the following condition is true : if in a triangle two sides coloured the same colour, then the third side is also coloured this colour. What is the maximum value of n with the given m ?
- \quad Function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following equation for all real x :

$$
f(f(x))=x^{2} f(x)-x+1
$$

. Find $f(1)$

