Art of Problem Solving

AoPS Community

Serbia National Math Olympiad 2016

www.artofproblemsolving.com/community/c252942
by mihajlon, aleksam, Zoom, Wolowizard

- Day 1
$1 \quad$ Let $n>1$ be an integer. Prove that there exist $m>n^{n}$ such that $\frac{n^{m}-m^{n}}{m+n}$ is a positive integer.
2 Let n be a positive integer. Let f be a function from nonnegative integers to themselves. Let $f(0, i)=f(i, 0)=0, f(1,1)=n$, and $f(i, j)=\left[\frac{f(i-1, j)}{2}\right]+\left[\frac{f(i, j-1)}{2}\right]$ for positive integers i, j such that $i * j>1$. Find the number of pairs (i, j) such that $f(i, j)$ is an odd number. $([x]$ is the floor function).

3 Let $A B C$ be a triangle and O its circumcentre. A line tangent to the circumcircle of the triangle $B O C$ intersects sides $A B$ at D and $A C$ at E. Let A^{\prime} be the image of A under $D E$. Prove that the circumcircle of the triangle $A^{\prime} D E$ is tangent to the circumcircle of triangle $A B C$.

- Day 2

4 Let $A B C$ be a triangle, and I the incenter, M midpoint of $B C, D$ the touch point of incircle and $B C$. Prove that perpendiculars from M, D, A to $A I, I M, B C$ respectively are concurrent

5 There are $2 n-1$ twoelement subsets of set $1,2, \ldots, n$. Prove that one can choose n out of these such that their union contains no more than $\frac{2}{3} n+1$ elements.

6 Let $a_{1}, a_{2}, \ldots, a_{2^{2016}}$ be positive integers not bigger than 2016. We know that for each $n \leq 2^{2016}$, $a_{1} a_{2} \ldots a_{n}+1$ is a perfect square. Prove that for some $i, a_{i}=1$.

