AoPS Community

www.artofproblemsolving.com/community/c253146
by john111111, george_54, gavrilos
$1 \quad$ Find all triplets of nonnegative integers (x, y, z) and $x \leq y$ such that $x^{2}+y^{2}=3 \cdot 2016^{z}+77$
2 Find all monic polynomials P, Q which are non-constant, have real coefficients and they satisfy $2 P(x)=Q\left(\frac{(x+1)^{2}}{2}\right)-Q\left(\frac{(x-1)^{2}}{2}\right)$ and $P(1)=1$ for all real x.
$3 \quad A B C$ is an acute isosceles triangle $(A B=A C)$ and $C D$ one altitude. Circle $C_{2}(C, C D)$ meets $A C$ at $K, A C$ produced at Z and circle $C_{1}(B, B D)$ at E. $D Z$ meets circle $\left(C_{1}\right)$ at M. Show that:
a) $\widehat{Z D E}=45^{\circ}$
b) Points E, M, K lie on a line.
c) $B M / / E C$

4 A square $A B C D$ is divided into n^{2} equal small (fundamental) squares by drawing lines parallel to its sides. The vertices of the fundamental squares are called vertices of the grid.A rhombus is called nice when: \bullet It is not a square • Its vertices are points of the grid • Its diagonals are parallel to the sides of the square $A B C D$
Find (as a function of n) the number of the nice rhombuses (n is a positive integer greater than 2).

