

AoPS Community

2016 China Team Selection Test

China Team Selection Test 2016

www.artofproblemsolving.com/community/c253462 by buzzychaoz, sqing, fattypiggy123

Day 1		
1	ABCDEF is a cyclic hexagon with $AB = BC = CD = DE$. K is a point on segment AE satisfying $\angle BKC = \angle KFE$, $\angle CKD = \angle KFA$. Prove that $KC = KF$.	
2	Find the smallest positive number λ , such that for any complex numbers $z_1, z_2, z_3 \in \{z \in C z < 1\}$, if $z_1 + z_2 + z_3 = 0$, then	
	$ z_1z_2+z_2z_3+z_3z_1 ^2+ z_1z_2z_3 ^2<\lambda.$	

3 Let $n \ge 2$ be a natural. Define

 $X = \{(a_1, a_2, \cdots, a_n) | a_k \in \{0, 1, 2, \cdots, k\}, k = 1, 2, \cdots, n\}$

For any two elements $s = (s_1, s_2, \cdots, s_n) \in X, t = (t_1, t_2, \cdots, t_n) \in X$, define

 $s \lor t = (\max\{s_1, t_1\}, \max\{s_2, t_2\}, \cdots, \max\{s_n, t_n\})$

 $s \wedge t = (\min\{s_1, t_1\}, \min\{s_2, t_2, \}, \cdots, \min\{s_n, t_n\})$

Find the largest possible size of a proper subset A of X such that for any $s, t \in A$, one has $s \lor t \in A, s \land t \in A$.

Day 2

4 Let c, d ≥ 2 be naturals. Let {a_n} be the sequence satisfying a₁ = c, a_{n+1} = a_n^d + c for n = 1, 2, Prove that for any n ≥ 2, there exists a prime number p such that p|a_n and p /|a_i for i = 1, 2, ...n - 1.
5 Refer to the diagram below. Let ABCD be a cyclic quadrilateral with center O. Let the internal angle bisectors of ∠A and ∠C intersect at I and let those of ∠B and ∠D intersect at J. Now extend AB and CD to intersect IJ and P and R respectively and let IJ intersect BC and DA at Q and S respectively. Let the midpoints of PR and QS be M and N respectively. Given that O does not lie on the line IJ, show that OM and ON are perpendicular.

AoPS Community

2016 China Team Selection Test

6 Let m, n be naturals satisfying $n \ge m \ge 2$ and let S be a set consisting of n naturals. Prove that S has at least 2^{n-m+1} distinct subsets, each whose sum is divisible by m. (The zero set counts as a subset).

TST 2	
Day 1	
1	<i>P</i> is a point in the interior of acute triangle <i>ABC</i> . <i>D</i> , <i>E</i> , <i>F</i> are the reflections of <i>P</i> across <i>BC</i> , <i>CA</i> , <i>AB</i> respectively. Rays <i>AP</i> , <i>BP</i> , <i>CP</i> meet the circumcircle of $\triangle ABC$ at <i>L</i> , <i>M</i> , <i>N</i> respectively. Prove that the circumcircles of $\triangle PDL$, $\triangle PEM$, $\triangle PFN$ meet at a point <i>T</i> different from <i>P</i> .
2	Find the smallest positive number λ , such that for any 12 points on the plane P_1, P_2, \ldots, P_{12} (can overlap), if the distance between any two of them does not exceed 1, then $\sum_{1 \le i < j \le 12} P_i P_j ^2 \le \lambda$.
3	Let P be a finite set of primes, A an infinite set of positive integers, where every element of A has a prime factor not in P . Prove that there exist an infinite subset B of A , such that the sum of elements in any finite subset of B has a prime factor not in P .
Day 2	
4	Set positive integer $m = 2^k \cdot t$, where k is a non-negative integer, t is an odd number, and let $f(m) = t^{1-k}$. Prove that for any positive integer n and for any positive odd number $a \leq n$, $\prod_{m=1}^{n} f(m)$ is a multiple of a .
5	Does there exist two infinite positive integer sets S, T , such that any positive integer n can be uniquely expressed in the form
	$n = s_1 t_1 + s_2 t_2 + \ldots + s_k t_k$
	, where k is a positive integer dependent on n , $s_1 < \ldots < s_k$ are elements of S , t_1, \ldots, t_k are elements of T ?
6	The diagonals of a cyclic quadrilateral $ABCD$ intersect at P , and there exist a circle Γ tangent to the extensions of AB , BC , AD , DC at X, Y, Z, T respectively. Circle Ω passes through points A, B , and is externally tangent to circle Γ at S . Prove that $SP \perp ST$.
TST 3	
Day 1	

AoPS Community

2016 China Team Selection Test

1 Let *n* be an integer greater than 1, α is a real, $0 < \alpha < 2$, $a_1, \ldots, a_n, c_1, \ldots, c_n$ are all positive numbers. For y > 0, let

$$f(y) = \left(\sum_{a_i \le y} c_i a_i^2\right)^{\frac{1}{2}} + \left(\sum_{a_i > y} c_i a_i^\alpha\right)^{\frac{1}{\alpha}}$$

If positive number x satisfies $x \ge f(y)$ (for some y), prove that $f(x) \le 8^{\frac{1}{\alpha}} \cdot x$.

- 2 In the coordinate plane the points with both coordinates being rational numbers are called rational points. For any positive integer *n*, is there a way to use *n* colours to colour all rational points, every point is coloured one colour, such that any line segment with both endpoints being rational points contains the rational points of every colour?
- 3 In cyclic quadrilateral ABCD, AB > BC, AD > DC, I, J are the incenters of $\triangle ABC, \triangle ADC$ respectively. The circle with diameter AC meets segment IB at X, and the extension of JDat Y. Prove that if the four points B, I, J, D are concyclic, then X, Y are the reflections of each other across AC.

Day 2

4 Let a, b, b', c, m, q be positive integers, where $m > 1, q > 1, |b - b'| \ge a$. It is given that there exist a positive integer M such that

$$S_q(an+b) \equiv S_q(an+b') + c \pmod{m}$$

holds for all integers $n \ge M$. Prove that the above equation is true for all positive integers n. (Here $S_q(x)$ is the sum of digits of x taken in base q).

5 Let *S* be a finite set of points on a plane, where no three points are collinear, and the convex hull of *S*, Ω , is a 2016–gon $A_1A_2 \dots A_{2016}$. Every point on *S* is labelled one of the four numbers $\pm 1, \pm 2$, such that for $i = 1, 2, \dots, 1008$, the numbers labelled on points A_i and A_{i+1008} are the negative of each other. Draw triangles whose vertices are in *S*, such that any two triangles do not have any common interior points and the union of these triangles in Ω .

interior points, and the union of these triangles is Ω . Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.

6 Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the following condition: for any three distinct real numbers a, b, c, a triangle can be formed with side lengths a, b, c, if and only if a triangle can be formed with side lengths f(a), f(b), f(c).

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.