Art of Problem Solving

AoPS Community

China Team Selection Test 2016
www.artofproblemsolving.com/community/c253462
by buzzychaoz, sqing, fattypiggy123

TST 1

Day 1

$1 \quad A B C D E F$ is a cyclic hexagon with $A B=B C=C D=D E . K$ is a point on segment $A E$ satisfying $\angle B K C=\angle K F E, \angle C K D=\angle K F A$. Prove that $K C=K F$.

2 Find the smallest positive number λ, such that for any complex numbers $z_{1}, z_{2}, z_{3} \in\{z \in$ $C||z|<1\}$, if $z_{1}+z_{2}+z_{3}=0$, then

$$
\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right|^{2}+\left|z_{1} z_{2} z_{3}\right|^{2}<\lambda
$$

$3 \quad$ Let $n \geq 2$ be a natural. Define

$$
X=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{k} \in\{0,1,2, \cdots, k\}, k=1,2, \cdots, n\right\}
$$

For any two elements $s=\left(s_{1}, s_{2}, \cdots, s_{n}\right) \in X, t=\left(t_{1}, t_{2}, \cdots, t_{n}\right) \in X$, define

$$
\begin{aligned}
& s \vee t=\left(\max \left\{s_{1}, t_{1}\right\}, \max \left\{s_{2}, t_{2}\right\}, \cdots, \max \left\{s_{n}, t_{n}\right\}\right) \\
& s \wedge t=\left(\min \left\{s_{1}, t_{1}\right\}, \min \left\{s_{2}, t_{2},\right\}, \cdots, \min \left\{s_{n}, t_{n}\right\}\right)
\end{aligned}
$$

Find the largest possible size of a proper subset A of X such that for any $s, t \in A$, one has $s \vee t \in A, s \wedge t \in A$.

Day 2

4 Let $c, d \geq 2$ be naturals. Let $\left\{a_{n}\right\}$ be the sequence satisfying $a_{1}=c, a_{n+1}=a_{n}^{d}+c$ for $n=$ $1,2, \cdots$.
Prove that for any $n \geq 2$, there exists a prime number p such that $p \mid a_{n}$ and $p \wedge a_{i}$ for $i=$ $1,2, \cdots n-1$.

5 Refer to the diagram below. Let $A B C D$ be a cyclic quadrilateral with center O. Let the internal angle bisectors of $\angle A$ and $\angle C$ intersect at I and let those of $\angle B$ and $\angle D$ intersect at J. Now extend $A B$ and $C D$ to intersect $I J$ and P and R respectively and let $I J$ intersect $B C$ and $D A$ at Q and S respectively. Let the midpoints of $P R$ and $Q S$ be M and N respectively. Given that O does not lie on the line $I J$, show that $O M$ and $O N$ are perpendicular.

AoPS Community

6 Let m, n be naturals satisfying $n \geq m \geq 2$ and let S be a set consisting of n naturals. Prove that S has at least 2^{n-m+1} distinct subsets, each whose sum is divisible by m. (The zero set counts as a subset).

TST 2

Day 1

$1 \quad P$ is a point in the interior of acute triangle $A B C . D, E, F$ are the reflections of P across $B C, C A, A B$ respectively. Rays $A P, B P, C P$ meet the circumcircle of $\triangle A B C$ at L, M, N respectively. Prove that the circumcircles of $\triangle P D L, \triangle P E M, \triangle P F N$ meet at a point T different from P.

2 Find the smallest positive number λ, such that for any 12 points on the plane $P_{1}, P_{2}, \ldots, P_{12}$ (can overlap), if the distance between any two of them does not exceed 1, then $\sum_{1 \leq i<j \leq 12}\left|P_{i} P_{j}\right|^{2} \leq$ λ.

3 Let P be a finite set of primes, A an infinite set of positive integers, where every element of A has a prime factor not in P. Prove that there exist an infinite subset B of A, such that the sum of elements in any finite subset of B has a prime factor not in P.

Day 2

4 Set positive integer $m=2^{k} \cdot t$, where k is a non-negative integer, t is an odd number, and let $f(m)=t^{1-k}$. Prove that for any positive integer n and for any positive odd number $a \leq n$, $\prod_{m=1}^{n} f(m)$ is a multiple of a.

5 Does there exist two infinite positive integer sets S, T, such that any positive integer n can be uniquely expressed in the form

$$
n=s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{k} t_{k}
$$

,where k is a positive integer dependent on $n, s_{1}<\ldots<s_{k}$ are elements of S, t_{1}, \ldots, t_{k} are elements of T ?

6 The diagonals of a cyclic quadrilateral $A B C D$ intersect at P, and there exist a circle Γ tangent to the extensions of $A B, B C, A D, D C$ at X, Y, Z, T respectively. Circle Ω passes through points A, B, and is externally tangent to circle Γ at S. Prove that $S P \perp S T$.

TST 3

Day 1

AoPS Community

1 Let n be an integer greater than $1, \alpha$ is a real, $0<\alpha<2, a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{n}$ are all positive numbers. For $y>0$, let

$$
f(y)=\left(\sum_{a_{i} \leq y} c_{i} a_{i}^{2}\right)^{\frac{1}{2}}+\left(\sum_{a_{i}>y} c_{i} a_{i}^{\alpha}\right)^{\frac{1}{\alpha}} .
$$

If positive number x satisfies $x \geq f(y)$ (for some y), prove that $f(x) \leq 8^{\frac{1}{\alpha}} \cdot x$.
2 In the coordinate plane the points with both coordinates being rational numbers are called rational points. For any positive integer n, is there a way to use n colours to colour all rational points, every point is coloured one colour, such that any line segment with both endpoints being rational points contains the rational points of every colour?

3 In cyclic quadrilateral $A B C D, A B>B C, A D>D C, I, J$ are the incenters of $\triangle A B C, \triangle A D C$ respectively. The circle with diameter $A C$ meets segment $I B$ at X, and the extension of $J D$ at Y. Prove that if the four points B, I, J, D are concyclic, then X, Y are the reflections of each other across $A C$.

Day 2

4 Let $a, b, b^{\prime}, c, m, q$ be positive integers, where $m>1, q>1,\left|b-b^{\prime}\right| \geq a$. It is given that there exist a positive integer M such that

$$
S_{q}(a n+b) \equiv S_{q}\left(a n+b^{\prime}\right)+c \quad(\bmod m)
$$

holds for all integers $n \geq M$. Prove that the above equation is true for all positive integers n. (Here $S_{q}(x)$ is the sum of digits of x taken in base q).

5 Let S be a finite set of points on a plane, where no three points are collinear, and the convex hull of S, Ω, is a 2016 -gon $A_{1} A_{2} \ldots A_{2016}$. Every point on S is labelled one of the four numbers $\pm 1, \pm 2$, such that for $i=1,2, \ldots, 1008$, the numbers labelled on points A_{i} and A_{i+1008} are the negative of each other.
Draw triangles whose vertices are in S, such that any two triangles do not have any common interior points, and the union of these triangles is Ω. Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.

6 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying the following condition: for any three distinct real numbers a, b, c, a triangle can be formed with side lengths a, b, c, if and only if a triangle can be formed with side lengths $f(a), f(b), f(c)$.

