AoPS Community

IMC 2015

www.artofproblemsolving.com/community/c254975
by randomusername, Gza Ks

- Day 1
$1 \quad$ For any integer $n \geq 2$ and two $n \times n$ matrices with real entries A, B that satisfy the equation

$$
A^{-1}+B^{-1}=(A+B)^{-1}
$$

prove that $\operatorname{det}(A)=\operatorname{det}(B)$.
Does the same conclusion follow for matrices with complex entries?
(Proposed by Zbigniew Skoczylas, Wroclaw University of Technology)
2 For a positive integer n, let $f(n)$ be the number obtained by writing n in binary and replacing every 0 with 1 and vice versa. For example, $n=23$ is 10111 in binary, so $f(n)$ is 1000 in binary, therefore $f(23)=8$. Prove that

$$
\sum_{k=1}^{n} f(k) \leq \frac{n^{2}}{4}
$$

When does equality hold?
(Proposed by Stephan Wagner, Stellenbosch University)
3 Let $F(0)=0, F(1)=\frac{3}{2}$, and $F(n)=\frac{5}{2} F(n-1)-F(n-2)$
for $n \geq 2$.
Determine whether or not $\sum_{n=0}^{\infty} \frac{1}{F\left(2^{n}\right)}$ is a rational number.
(Proposed by Gerhard Woeginger, Eindhoven University of Technology)
4 Determine whether or not there exist 15 integers m_{1}, \ldots, m_{15} such that

$$
\begin{equation*}
\sum_{k=1}^{15} m_{k} \cdot \arctan (k)=\arctan (16) \tag{1}
\end{equation*}
$$

(Proposed by Gerhard Woeginger, Eindhoven University of Technology)

5 Let $n \geq 2$, let $A_{1}, A_{2}, \ldots, A_{n+1}$ be $n+1$ points in the n-dimensional Euclidean space, not lying on the same hyperplane, and let B be a point strictly inside the convex hull of $A_{1}, A_{2}, \ldots, A_{n+1}$. Prove that $\angle A_{i} B A_{j}>90^{\circ}$ holds for at least n pairs (i, j) with $1 \leq i<j \leq n+1$.
Proposed by Gza Ks, Etvs University, Budapest

- Day 2

6 Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(n+1)}<2
$$

Proposed by Ivan Krijan, University of Zagreb
7 Compute

$$
\lim _{A \rightarrow+\infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} d x
$$

Proposed by Jan ustek, University of Ostrava
8 Consider all 26^{26} words of length 26 in the Latin alphabet. Define the weight of a word as $1 /(k+1)$, where k is the number of letters not used in this word. Prove that the sum of the weights of all words is 3^{75}.

Proposed by Fedor Petrov, St. Petersburg State University
$9 \quad$ An $n \times n$ complex matrix A is called t-normal if $A A^{t}=A^{t} A$ where A^{t} is the transpose of A. For each n,
determine the maximum dimension of a linear space of complex $n \times n$ matrices consisting of t-normal matrices.

Proposed by Shachar Carmeli, Weizmann Institute of Science
10 Let n be a positive integer, and let $p(x)$ be a polynomial of degree n with integer coefficients. Prove that

$$
\max _{0 \leq x \leq 1}|p(x)|>\frac{1}{e^{n}}
$$

Proposed by Gza Ks, Etvs University, Budapest

