AoPS Community

2016 Romanian Masters in Mathematic

8th RMM 2016

www.artofproblemsolving.com/community/c254976
by v_Enhance, huricane, FabrizioFelen, ABCDE

Day 1 February 26, 2016
1 Let $A B C$ be a triangle and let D be a point on the segment $B C, D \neq B$ and $D \neq C$. The circle $A B D$ meets the segment $A C$ again at an interior point E. The circle $A C D$ meets the segment $A B$ again at an interior point F. Let A^{\prime} be the reflection of A in the line $B C$. The lines $A^{\prime} C$ and $D E$ meet at P, and the lines $A^{\prime} B$ and $D F$ meet at Q. Prove that the lines $A D, B P$ and $C Q$ are concurrent (or all parallel).

2 Given positive integers m and $n \geq m$, determine the largest number of dominoes (1×2 or 2×1 rectangles) that can be placed on a rectangular board with m rows and $2 n$ columns consisting of cells (1×1
squares) so that:
(i) each domino covers exactly two adjacent cells of the board;
(ii) no two dominoes overlap;
(iii) no two form a 2×2 square; and
(iv) the bottom row of the board is completely covered by n dominoes.

3 A cubic sequence is a sequence of integers given by $a_{n}=n^{3}+b n^{2}+c n+d$, where b, c and d are integer constants and n ranges over all integers, including negative integers. (a) Show that there exists a cubic sequence such that the only terms of the sequence which are squares of integers are a_{2015} and a_{2016}. (b) Determine the possible values of $a_{2015} \cdot a_{2016}$ for a cubic sequence satisfying the condition in part (a).

Day 2 February 27, 2016
$4 \quad$ Let x and y be positive real numbers such that: $x+y^{2016} \geq 1$. Prove that $x^{2016}+y>1-\frac{1}{100}$
5 A convex hexagon $A_{1} B_{1} A_{2} B_{2} A_{3} B_{3}$ it is inscribed in a circumference Ω with radius R. The diagonals $A_{1} B_{2}, A_{2} B_{3}, A_{3} B_{1}$ are concurrent in X. For each $i=1,2,3$ let ω_{i} tangent to the segments $X A_{i}$ and $X B_{i}$ and tangent to the arc $A_{i} B_{i}$ of Ω that does not contain the other vertices of the hexagon; let r_{i} the radius of ω_{i}.
(a) Prove that $R \geq r_{1}+r_{2}+r_{3}$ (b) If $R=r_{1}+r_{2}+r_{3}$, prove that the six points of tangency of the circumferences ω_{i} with the diagonals $A_{1} B_{2}, A_{2} B_{3}, A_{3} B_{1}$ are concyclic

6 A set of n points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned
into two subsets \mathcal{A} and \mathcal{B}. An $\mathcal{A B}$-tree is a configuration of $n-1$ segments, each of which has an endpoint in \mathcal{A} and an endpoint in \mathcal{B}, and such that no segments form a closed polyline. An $\mathcal{A B}$-tree is transformed into another as follows: choose three distinct segments $A_{1} B_{1}, B_{1} A_{2}$, and $A_{2} B_{2}$ in the $\mathcal{A B}$-tree such that A_{1} is in \mathcal{A} and $\left|A_{1} B_{1}\right|+\left|A_{2} B_{2}\right|>\left|A_{1} B_{2}\right|+\left|A_{2} B_{1}\right|$, and remove the segment $A_{1} B_{1}$ to replace it by the segment $A_{1} B_{2}$. Given any $\mathcal{A B}$-tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps.

