AoPS Community

www.artofproblemsolving.com/community/c254989
by silouan

1 Let $P(x)=x^{4}-x^{3}-3 x^{2}-x+1$. Prove that there are infinitely many positive integers n such that $P\left(3^{n}\right)$ is not a prime.

2 Prove that for each triangle, there exists a vertex, such that with the two sides starting from that vertex and each cevian starting from that vertex, is possible to construct a triangle.

3 In the Cartesian plane \mathbb{R}^{2}, each triangle contains a Mediterranean point on its sides or in its interior, even if the triangle is degenerated into a segment or a point. The Mediterranean points have the following properties:
(i) If a triangle is symmetric with respect to a line which passes through the origin $(0,0)$, then the Mediterranean point lies on this line.
(ii) If the triangle $D E F$ contains the triangle $A B C$ and if the triangle $A B C$ contains the Mediterranean points M of $D E F$, then M is the Mediterranean point of the triangle $A B C$.

Find all possible positions for the Mediterranean point of the triangle with vertices $(-3,5),(12,5),(3,11)$.

4 In a mathematical contest, some of the competitors are friends and friendship is mutual. Prove that there is a subset M of the competitors such that each element of M has at most three friends in M and such that each competitor who is not in M, has at least four friends in M.

