AoPS Community

2021 United States Ersatz Math Olympiad, 30-31 October 2021

www.artofproblemsolving.com/community/c2549921
by parmenides51, MathLuis, megarnie, 62861

Day 1 October 30, 2021

1 Let n be a fixed positive integer and consider an $n \times n$ grid of real numbers. Determine the greatest possible number of cells c in the grid such that the entry in c is both strictly greater than the average of c 's column and strictly less than the average of c 's row.

Proposed by Holden Mui

2 Find all integers $n \geq 1$ such that $2^{n}-1$ has exactly n positive integer divisors.
Proposed by Ankan Bhattacharya
3 Let $A_{1} C_{2} B_{1} A_{2} C_{1} B_{2}$ be an equilateral hexagon. Let O_{1} and H_{1} denote the circumcenter and orthocenter of $\triangle A_{1} B_{1} C_{1}$, and let O_{2} and H_{2} denote the circumcenter and orthocenter of $\triangle A_{2} B_{2} C_{2}$. Suppose that $O_{1} \neq O_{2}$ and $H_{1} \neq H_{2}$. Prove that the lines $O_{1} O_{2}$ and $H_{1} H_{2}$ are either parallel or coincide.

Ankan Bhattacharya
Day 2 October 31, 2021
$4 \quad$ Let $A B C$ be a triangle with circumcircle ω, and let X be the reflection of A in B. Line $C X$ meets ω again at D. Lines $B D$ and $A C$ meet at E, and lines $A D$ and $B C$ meet at F. Let M and N denote the midpoints of $A B$ and $A C$.
Can line $E F$ share a point with the circumcircle of triangle $A M N$?
Proposed by Sayandeep Shee
5 Given a polynomial $p(x)$ with real coefficients, we denote by $S(p)$ the sum of the squares of its coefficients. For example $S(20 x+21)=20^{2}+21^{2}=841$.
Prove that if $f(x), g(x)$, and $h(x)$ are polynomials with real coefficients satisfying the indentity $f(x) \cdot g(x)=h(x)^{2}$, then

$$
S(f) \cdot S(g) \geq S(h)^{2}
$$

Proposed by Bhavya Tiwari

6 A bagel is a loop of $2 a+2 b+4$ unit squares which can be obtained by cutting a concentric $a \times b$ hole out of an $(a+2) \times(b+2)$ rectangle, for some positive integers a and b . (The side of length a of the hole is parallel to the side of length $a+2$ of the rectangle.)

Consider an infinite grid of unit square cells. For each even integer $n \geq 8$, a bakery of order n is a finite set of cells S such that, for every n-cell bagel B in the grid, there exists a congruent copy of B all of whose cells are in S. (The copy can be translated and rotated.) We denote by $f(n)$ the smallest possible number of cells in a bakery of order n.
Find a real number α such that, for all sufficiently large even integers $n \geq 8$, we have

$$
\frac{1}{100}<\frac{f(n)}{n^{\alpha}}<100
$$

