

AoPS Community

Final Round - Korea 2016

www.artofproblemsolving.com/community/c255066 by v_Enhance, rkm0959

Day 1 March 19, 2016

1	In a acute triangle $\triangle ABC$, denote D, E as the foot of the perpendicular from B to AC and C to AB . Denote the reflection of E with respect to AC, BC as S, T . The circumcircle of $\triangle CST$ hits AC at point $X(\neq C)$. Denote the circumcenter of $\triangle CST$ as O . Prove that $XO \perp DE$.
2	Two integers n, k satisfies $n \ge 2$ and $k \ge \frac{5}{2}n - 1$. Prove that whichever k lattice points with x and y coordinate no less than 1 and no more than n we pick, there must be a circle passing through at least four of these points.
3	Prove that for all rationals $x, y, x - \frac{1}{x} + y - \frac{1}{y} = 4$ is not true.
Day 2	March 20, 2016

4 If x, y, z satisfies $x^2 + y^2 + z^2 = 1$, find the maximum possible value of

$$(x^2 - yz)(y^2 - zx)(z^2 - xy)$$

5 An acute triangle $\triangle ABC$ has incenter *I*, and the incircle hits BC, CA, AB at D, E, F. Lines BI, CI, BC, DI hits EF at K, L, M, Q and the line connecting the midpoint of segment *CL* and *M* hits the line segment *CK* at *P*. Prove that

$$PQ = \frac{AB \cdot KQ}{BI}$$

6 Let U be a set of m triangles. Prove that there exists a subset W of U which satisfies the following.

(i). The number of triangles in W is at least $0.45m^{\frac{4}{5}}$

(ii) There are no points A, B, C, D, E, F such that triangles ABC, BCD, CDE, DEF, EFA, FAB are all in W.

Art of Problem Solving is an ACS WASC Accredited School.