

### **AoPS Community**

## 2016 China National Olympiad

#### **China National Olympiad 2016**

www.artofproblemsolving.com/community/c255106 by rkm0959, sqing, fattypiggy123

#### Day 1 December 16th

| 1 | Let $a_1, a_2, \cdots, a_{31}; b_1, b_2, \cdots, b_{31}$ be positive integers such that $a_1 < a_2 < \cdots < a_{31} \le 2015$ , |
|---|----------------------------------------------------------------------------------------------------------------------------------|
|   | $b_1 < b_2 < \dots < b_{31} \le 2015$ and $a_1 + a_2 + \dots + a_{31} = b_1 + b_2 + \dots + b_{31}$ .                            |
|   | Find the maximum value of $S =  a_1 - b_1  +  a_2 - b_2  + \dots +  a_{31} - b_{31} $ .                                          |

- 2 In  $\triangle AEF$ , let *B* and *D* be on segments *AE* and *AF* respectively, and let *ED* and *FB* intersect at *C*. Define *K*, *L*, *M*, *N* on segments *AB*, *BC*, *CD*, *DA* such that  $\frac{AK}{KB} = \frac{AD}{BC}$  and its cyclic equivalents. Let the incircle of  $\triangle AEF$  touch *AE*, *AF* at *S*, *T* respectively; let the incircle of  $\triangle CEF$  touch *CE*, *CF* at *U*, *V* respectively. Prove that *K*, *L*, *M*, *N* concyclic implies *S*, *T*, *U*, *V* concyclic.
- **3** Let p be an odd prime and  $a_1, a_2, ..., a_p$  be integers. Prove that the following two conditions are equivalent:

1) There exists a polynomial P(x) with degree  $\leq \frac{p-1}{2}$  such that  $P(i) \equiv a_i \pmod{p}$  for all  $1 \leq i \leq p$ 

2) For any natural 
$$d \leq \frac{p-1}{2}$$
,

$$\sum_{i=1}^{p} (a_{i+d} - a_i)^2 \equiv 0 \pmod{p}$$

where indices are taken  $\pmod{p}$ 

Day 2 December 17th

- 4 Let  $n \ge 2$  be a positive integer and define k to be the number of primes  $\le n$ . Let A be a subset of  $S = \{2, ..., n\}$  such that  $|A| \le k$  and no two elements in A divide each other. Show that one can find a set B such that |B| = k,  $A \subseteq B \subseteq S$  and no two elements in B divide each other.
- **5** Let ABCD be a convex quadrilateral. Show that there exists a square A'B'C'D' (Vertices maybe ordered clockwise or counter-clockwise) such that  $A \neq A', B \neq B', C \neq C', D \neq D'$  and AA', BB', CC', DD' are all concurrent.
- **6** Let *G* be a complete directed graph with 100 vertices such that for any two vertices x, y one can find a directed path from x to y.

a) Show that for any such G, one can find a m such that for any two vertices x, y one can find a directed path of length m from x to y (Vertices can be repeated in the path)

## **AoPS Community**

# 2016 China National Olympiad

b) For any graph *G* with the properties above, define m(G) to be smallest possible *m* as defined in part a). Find the minimim value of m(G) over all such possible *G*'s.

Act of Problem Solving is an ACS WASC Accredited School.