AoPS Community

China National Olympiad 2016
www.artofproblemsolving.com/community/c255106
by rkm0959, sqing, fattypiggy 123

Day 1 December 16th

1 Let $a_{1}, a_{2}, \cdots, a_{31} ; b_{1}, b_{2}, \cdots, b_{31}$ be positive integers such that $a_{1}<a_{2}<\cdots<a_{31} \leq 2015$, $b_{1}<b_{2}<\cdots<b_{31} \leq 2015$ and $a_{1}+a_{2}+\cdots+a_{31}=b_{1}+b_{2}+\cdots+b_{31}$.
Find the maximum value of $S=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\cdots+\left|a_{31}-b_{31}\right|$.
2 In $\triangle A E F$, let B and D be on segments $A E$ and $A F$ respectively, and let $E D$ and $F B$ intersect at C. Define K, L, M, N on segments $A B, B C, C D, D A$ such that $\frac{A K}{K B}=\frac{A D}{B C}$ and its cyclic equivalents. Let the incircle of $\triangle A E F$ touch $A E, A F$ at S, T respectively; let the incircle of $\triangle C E F$ touch $C E, C F$ at U, V respectively.
Prove that K, L, M, N concyclic implies S, T, U, V concyclic.
3 Let p be an odd prime and $a_{1}, a_{2}, \ldots, a_{p}$ be integers. Prove that the following two conditions are equivalent:

1) There exists a polynomial $P(x)$ with degree $\leq \frac{p-1}{2}$ such that $P(i) \equiv a_{i}(\bmod p)$ for all $1 \leq$ $i \leq p$
2) For any natural $d \leq \frac{p-1}{2}$,

$$
\sum_{i=1}^{p}\left(a_{i+d}-a_{i}\right)^{2} \equiv 0 \quad(\bmod p)
$$

where indices are taken $(\bmod p)$
Day 2 December 17th
4 Let $n \geq 2$ be a positive integer and define k to be the number of primes $\leq n$. Let A be a subset of $S=\{2, \ldots, n\}$ such that $|A| \leq k$ and no two elements in A divide each other. Show that one can find a set B such that $|B|=k, A \subseteq B \subseteq S$ and no two elements in B divide each other.

5 Let $A B C D$ be a convex quadrilateral. Show that there exists a square $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (Vertices maybe ordered clockwise or counter-clockwise) such that $A \neq A^{\prime}, B \neq B^{\prime}, C \neq C^{\prime}, D \neq D^{\prime}$ and $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ are all concurrent.

6 Let G be a complete directed graph with 100 vertices such that for any two vertices x, y one can find a directed path from x to y.
a) Show that for any such G, one can find a m such that for any two vertices x, y one can find a directed path of length m from x to y (Vertices can be repeated in the path)
b) For any graph G with the properties above, define $m(G)$ to be smallest possible m as defined in part a). Find the minimim value of $m(G)$ over all such possible G 's.

